1
|
Shi J, Li C, Gong T, Wang C, Fu H. CoD-MIL: Chain-of-Diagnosis Prompting Multiple Instance Learning for Whole Slide Image Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1218-1229. [PMID: 39441683 DOI: 10.1109/tmi.2024.3485120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Multiple instance learning (MIL) has emerged as a prominent paradigm for processing the whole slide image with pyramid structure and giga-pixel size in digital pathology. However, existing attention-based MIL methods are primarily trained on the image modality and a pre-defined label set, leading to limited generalization and interpretability. Recently, vision language models (VLM) have achieved promising performance and transferability, offering potential solutions to the limitations of MIL-based methods. Pathological diagnosis is an intricate process that requires pathologists to examine the WSI step-by-step. In the field of natural language process, the chain-of-thought (CoT) prompting method is widely utilized to imitate the human reasoning process. Inspired by the CoT prompt and pathologists' clinic knowledge, we propose a chain-of-diagnosis prompting multiple instance learning (CoD-MIL) framework for whole slide image classification. Specifically, the chain-of-diagnosis text prompt decomposes the complex diagnostic process in WSI into progressive sub-processes from low to high magnification. Additionally, we propose a text-guided contrastive masking module to accurately localize the tumor region by masking the most discriminative instances and introducing the guidance of normal tissue texts in a contrastive way. Extensive experiments conducted on three real-world subtyping datasets demonstrate the effectiveness and superiority of CoD-MIL.
Collapse
|
2
|
Huang Y, Zhao W, Fu Y, Zhu L, Yu L. Unleash the Power of State Space Model for Whole Slide Image With Local Aware Scanning and Importance Resampling. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1032-1042. [PMID: 39374278 DOI: 10.1109/tmi.2024.3475587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Whole slide image (WSI) analysis is gaining prominence within the medical imaging field. However, previous methods often fall short of efficiently processing entire WSIs due to their gigapixel size. Inspired by recent developments in state space models, this paper introduces a new Pathology Mamba (PAM) for more accurate and robust WSI analysis. PAM includes three carefully designed components to tackle the challenges of enormous image size, the utilization of local and hierarchical information, and the mismatch between the feature distributions of training and testing during WSI analysis. Specifically, we design a Bi-directional Mamba Encoder to process the extensive patches present in WSIs effectively and efficiently, which can handle large-scale pathological images while achieving high performance and accuracy. To further harness the local information and inherent hierarchical structure of WSI, we introduce a novel Local-aware Scanning module, which employs a local-aware mechanism alongside hierarchical scanning to adeptly capture both the local information and the overarching structure within WSIs. Moreover, to alleviate the patch feature distribution misalignment between training and testing, we propose a Test-time Importance Resampling module to conduct testing patch resampling to ensure consistency of feature distribution between the training and testing phases, and thus enhance model prediction. Extensive evaluation on nine WSI datasets with cancer subtyping and survival prediction tasks demonstrates that PAM outperforms current state-of-the-art methods and also its enhanced capability in modeling discriminative areas within WSIs. The source code is available at https://github.com/HKU-MedAI/PAM.
Collapse
|
3
|
Chikontwe P, Kim M, Jeong J, Jung Sung H, Go H, Jeong Nam S, Park SH. FR-MIL: Distribution Re-Calibration-Based Multiple Instance Learning With Transformer for Whole Slide Image Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:409-421. [PMID: 39163176 DOI: 10.1109/tmi.2024.3446716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
In digital pathology, whole slide images (WSI) are crucial for cancer prognostication and treatment planning. WSI classification is generally addressed using multiple instance learning (MIL), alleviating the challenge of processing billions of pixels and curating rich annotations. Though recent MIL approaches leverage variants of the attention mechanism to learn better representations, they scarcely study the properties of the data distribution itself i.e., different staining and acquisition protocols resulting in intra-patch and inter-slide variations. In this work, we first introduce a distribution re-calibration strategy to shift the feature distribution of a WSI bag (instances) using the statistics of the max-instance (critical) feature. Second, we enforce class (bag) separation via a metric loss assuming that positive bags exhibit larger magnitudes than negatives. We also introduce a generative process leveraging Vector Quantization (VQ) for improved instance discrimination i.e., VQ helps model bag latent factors for improved classification. To model spatial and context information, a position encoding module (PEM) is employed with transformer-based pooling by multi-head self-attention (PMSA). Evaluation of popular WSI benchmark datasets reveals our approach improves over state-of-the-art MIL methods. Further, we validate the general applicability of our method on classic MIL benchmark tasks and for point cloud classification with limited points. https://github.com/PhilipChicco/FRMIL.
Collapse
|
4
|
Zhang J, Hao F, Liu X, Yao S, Wu Y, Li M, Zheng W. Multi-scale multi-instance contrastive learning for whole slide image classification. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024; 138:109300. [DOI: 10.1016/j.engappai.2024.109300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
An J, Li W, Bai Y, Chen H, Zhao G, Cai Q, Gao Z. MTECC: A Multitask Learning Framework for Esophageal Cancer Analysis. IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2024; 5:6739-6751. [DOI: 10.1109/tai.2024.3485524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Jianpeng An
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Wenqi Li
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yunhao Bai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Huazhen Chen
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qing Cai
- School of Artificial Intelligence, Tiangong University, Tianjin, China
| | - Zhongke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Hosseini MS, Bejnordi BE, Trinh VQH, Chan L, Hasan D, Li X, Yang S, Kim T, Zhang H, Wu T, Chinniah K, Maghsoudlou S, Zhang R, Zhu J, Khaki S, Buin A, Chaji F, Salehi A, Nguyen BN, Samaras D, Plataniotis KN. Computational pathology: A survey review and the way forward. J Pathol Inform 2024; 15:100357. [PMID: 38420608 PMCID: PMC10900832 DOI: 10.1016/j.jpi.2023.100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 03/02/2024] Open
Abstract
Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath. For updated information on this survey review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this draft can also be found from arXiv.
Collapse
Affiliation(s)
- Mahdi S. Hosseini
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | | | - Vincent Quoc-Huy Trinh
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Lyndon Chan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Danial Hasan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Xingwen Li
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Stephen Yang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Taehyo Kim
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Haochen Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Theodore Wu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Kajanan Chinniah
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Sina Maghsoudlou
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ryan Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jiadai Zhu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Samir Khaki
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Andrei Buin
- Huron Digitial Pathology, St. Jacobs, ON N0B 2N0, Canada
| | - Fatemeh Chaji
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ala Salehi
- Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Bich Ngoc Nguyen
- University of Montreal Hospital Center, Montreal, QC H2X 0C2, Canada
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, United States
| | - Konstantinos N. Plataniotis
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
7
|
Sun D, Li H, Wang Y, Li D, Xu D, Zhang Z. Artificial intelligence-based pathological application to predict regional lymph node metastasis in Papillary Thyroid Cancer. Curr Probl Cancer 2024; 53:101150. [PMID: 39342815 DOI: 10.1016/j.currproblcancer.2024.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
In this study, a model for predicting lymph node metastasis in papillary thyroid cancer was trained using pathology images from the TCGA(The Cancer Genome Atlas) public dataset of papillary thyroid cancer, and a front-end inference model was trained using our center's dataset based on the concept of probabilistic propagation of nodes in graph neural networks. Effectively predicting whether a tumor will spread to regional lymph nodes using a single pathological image is the capacity of the model described above. This study demonstrates that regional lymph nodes in papillary thyroid cancer are a common and predictable occurrence, providing valuable ideas for future research. Now we publish the above research process and code for further study by other researchers, and we also make the above inference algorithm public at the URL: http:// thyroid-diseases-research.com/, with the hope that other researchers will validate it and provide us with ideas or datasets for further study.
Collapse
Affiliation(s)
- Dawei Sun
- The Affiliated Hospital of Qingdao University, PR China
| | - Huichao Li
- The Affiliated Hospital of Qingdao University, PR China
| | - Yaozong Wang
- Ningbo Huamei Hospital University of Chinese Academy of Sciences(Ningbo No.2 Hospital), PR China
| | - Dayuan Li
- Ningbo Institute of Material Technology and Engineering University of Chinese Academy of Sciences, PR China
| | - Di Xu
- Ningbo Institute of Material Technology and Engineering University of Chinese Academy of Sciences, PR China
| | - Zhoujing Zhang
- The Affiliated Hospital of Qingdao University, PR China; Ningbo Institute of Material Technology and Engineering University of Chinese Academy of Sciences, PR China; Ningbo Huamei Hospital University of Chinese Academy of Sciences(Ningbo No.2 Hospital), PR China.
| |
Collapse
|
8
|
Zheng Y, Qiu B, Liu S, Song R, Yang X, Wu L, Chen Z, Tuersun A, Yang X, Wang W, Liu Z. A transformer-based deep learning model for early prediction of lymph node metastasis in locally advanced gastric cancer after neoadjuvant chemotherapy using pretreatment CT images. EClinicalMedicine 2024; 75:102805. [PMID: 39281097 PMCID: PMC11402411 DOI: 10.1016/j.eclinm.2024.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Background Early prediction of lymph node status after neoadjuvant chemotherapy (NAC) facilitates promptly optimization of treatment strategies. This study aimed to develop and validate a deep learning network (DLN) using baseline computed tomography images to predict lymph node metastasis (LNM) after NAC in patients with locally advanced gastric cancer (LAGC). Methods A total of 1205 LAGC patients were retrospectively recruited from three hospitals between January 2013 and March 2023, constituting a training cohort, an internal validation cohort, and two external validation cohorts. A transformer-based DLN was developed using 3D tumor images to predict LNM after NAC. A clinical model was constructed through multivariate logistic regression analysis as a baseline for subsequent comparisons. The performance of the models was evaluated through discrimination, calibration, and clinical applicability. Furthermore, Kaplan-Meier survival analysis was conducted to assess overall survival (OS) of LAGC patients at two follow-up centers. Findings The DLN outperformed the clinical model and demonstrated a robust performance for predicting LNM in the training and validation cohorts, with areas under the curve (AUCs) of 0.804 (95% confidence interval [CI], 0.752-0.849), 0.748 (95% CI, 0.660-0.830), 0.788 (95% CI, 0.735-0.835), and 0.766 (95% CI, 0.717-0.814), respectively. Decision curve analysis exhibited a high net clinical benefit of the DLN. Moreover, the DLN was significantly associated with the OS of LAGC patients [Center 1: hazard ratio (HR), 1.789, P < 0.001; Center 2:HR, 1.776, P = 0.013]. Interpretation The transformer-based DLN provides early and effective prediction of LNM and survival outcomes in LAGC patients receiving NAC, with promise to guide individualized therapy. Future prospective multicenter studies are warranted to further validate our model. Funding National Natural Science Foundation of China (NO. 82373432, 82171923, 82202142), Project Funded by China Postdoctoral Science Foundation (NO. 2022M720857), Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (NO. U22A20345), National Science Fund for Distinguished Young Scholars of China (NO. 81925023), Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (NO. 2022B1212010011), High-level Hospital Construction Project (NO. DFJHBF202105), Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (NO. 2024B1515020091).
Collapse
Affiliation(s)
- Yunlin Zheng
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| | - Bingjiang Qiu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Sciences, Guangzhou, 510080, China
| | - Shunli Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province, 266000, China
| | - Ruirui Song
- Department of Radiology, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Xianqi Yang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lei Wu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| | - Zhihong Chen
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Abudouresuli Tuersun
- Department of Radiology, The First People's Hospital of Kashi Prefecture, Kashi, 844700, China
| | - Xiaotang Yang
- Department of Radiology, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| |
Collapse
|
9
|
Tang L, Diao S, Li C, He M, Ru K, Qin W. Global contextual representation via graph-transformer fusion for hepatocellular carcinoma prognosis in whole-slide images. Comput Med Imaging Graph 2024; 115:102378. [PMID: 38640621 DOI: 10.1016/j.compmedimag.2024.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024]
Abstract
Current methods of digital pathological images typically employ small image patches to learn local representative features to overcome the issues of computationally heavy and memory limitations. However, the global contextual features are not fully considered in whole-slide images (WSIs). Here, we designed a hybrid model that utilizes Graph Neural Network (GNN) module and Transformer module for the representation of global contextual features, called TransGNN. GNN module built a WSI-Graph for the foreground area of a WSI for explicitly capturing structural features, and the Transformer module through the self-attention mechanism implicitly learned the global context information. The prognostic markers of hepatocellular carcinoma (HCC) prognostic biomarkers were used to illustrate the importance of global contextual information in cancer histopathological analysis. Our model was validated using 362 WSIs from 355 HCC patients diagnosed from The Cancer Genome Atlas (TCGA). It showed impressive performance with a Concordance Index (C-Index) of 0.7308 (95% Confidence Interval (CI): (0.6283-0.8333)) for overall survival prediction and achieved the best performance among all models. Additionally, our model achieved an area under curve of 0.7904, 0.8087, and 0.8004 for 1-year, 3-year, and 5-year survival predictions, respectively. We further verified the superior performance of our model in HCC risk stratification and its clinical value through Kaplan-Meier curve and univariate and multivariate COX regression analysis. Our research demonstrated that TransGNN effectively utilized the context information of WSIs and contributed to the clinical prognostic evaluation of HCC.
Collapse
Affiliation(s)
- Luyu Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Songhui Diao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Li
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK; School of Medicine, University of Dundee, Scotland, UK
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Kun Ru
- Department of Pathology and Lab Medicine, Shandong Cancer Hospital, Jinan 250117, China
| | - Wenjian Qin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
10
|
Liu Y, Chen W, Ruan R, Zhang Z, Wang Z, Guan T, Lin Q, Tang W, Deng J, Wang Z, Li G. Deep learning based digital pathology for predicting treatment response to first-line PD-1 blockade in advanced gastric cancer. J Transl Med 2024; 22:438. [PMID: 38720336 PMCID: PMC11077733 DOI: 10.1186/s12967-024-05262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone as the first-line therapy. However, with the Food and Drug Administration's (FDA) 2022 approval of programmed cell death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to predict first-line PD-1 combined chemotherapy response for advanced-stage GC. METHODS In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel histopathological biomarker derived from Whole Slide Images (WSIs). RESULTS Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001). CONCLUSION ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients' responses to PD-1 combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more individualized and potentially effective treatment strategies based on a patient's unique response situations.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ruiwen Ruan
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhimei Zhang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China
| | - Tianpei Guan
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qi Lin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China
| | - Wei Tang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China
| | - Jun Deng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Zhao Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China.
| | - Guanghua Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Zhongshan 2nd Street, No. 58, Guangzhou, 510080, 86, Guangdong, China.
| |
Collapse
|
11
|
Zhou H, Hua Z, Gao J, Lin F, Chen Y, Zhang S, Zheng T, Wang Z, Shao H, Li W, Liu F, Li Q, Chen J, Wang X, Zhao F, Qu N, Xie H, Ma H, Zhang H, Mao N. Multitask Deep Learning-Based Whole-Process System for Automatic Diagnosis of Breast Lesions and Axillary Lymph Node Metastasis Discrimination from Dynamic Contrast-Enhanced-MRI: A Multicenter Study. J Magn Reson Imaging 2024; 59:1710-1722. [PMID: 37497811 DOI: 10.1002/jmri.28913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Accurate diagnosis of breast lesions and discrimination of axillary lymph node (ALN) metastases largely depend on radiologist experience. PURPOSE To develop a deep learning-based whole-process system (DLWPS) for segmentation and diagnosis of breast lesions and discrimination of ALN metastasis. STUDY TYPE Retrospective. POPULATION 1760 breast patients, who were divided into training and validation sets (1110 patients), internal (476 patients), and external (174 patients) test sets. FIELD STRENGTH/SEQUENCE 3.0T/dynamic contrast-enhanced (DCE)-MRI sequence. ASSESSMENT DLWPS was developed using segmentation and classification models. The DLWPS-based segmentation model was developed by the U-Net framework, which combined the attention module and the edge feature extraction module. The average score of the output scores of three networks was used as the result of the DLWPS-based classification model. Moreover, the radiologists' diagnosis without and with the DLWPS-assistance was explored. To reveal the underlying biological basis of DLWPS, genetic analysis was performed based on RNA-sequencing data. STATISTICAL TESTS Dice similarity coefficient (DI), area under receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and kappa value. RESULTS The segmentation model reached a DI of 0.828 and 0.813 in the internal and external test sets, respectively. Within the breast lesions diagnosis, the DLWPS achieved AUCs of 0.973 in internal test set and 0.936 in external test set. For ALN metastasis discrimination, the DLWPS achieved AUCs of 0.927 in internal test set and 0.917 in external test set. The agreement of radiologists improved with the DLWPS-assistance from 0.547 to 0.794, and from 0.848 to 0.892 in breast lesions diagnosis and ALN metastasis discrimination, respectively. Additionally, 10 breast cancers with ALN metastasis were associated with pathways of aerobic electron transport chain and cytoplasmic translation. DATA CONCLUSION The performance of DLWPS indicates that it can promote radiologists in the judgment of breast lesions and ALN metastasis and nonmetastasis. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Heng Zhou
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, Shandong, China
| | - Zhen Hua
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, Shandong, China
| | - Jing Gao
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Fan Lin
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Yuqian Chen
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, Shandong, China
| | - Shijie Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Tiantian Zheng
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhongyi Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Huafei Shao
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Wenjuan Li
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Fengjie Liu
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Qin Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jingjing Chen
- Department of Radiology, Qingdao University Affiliated Hospital, Qingdao, Shandong, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, Shandong, China
| | - Nina Qu
- Department of Ultrasound, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Haicheng Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
12
|
Liu P, Ji L, Zhang X, Ye F. Pseudo-Bag Mixup Augmentation for Multiple Instance Learning-Based Whole Slide Image Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1841-1852. [PMID: 38194395 DOI: 10.1109/tmi.2024.3351213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Given the special situation of modeling gigapixel images, multiple instance learning (MIL) has become one of the most important frameworks for Whole Slide Image (WSI) classification. In current practice, most MIL networks often face two unavoidable problems in training: i) insufficient WSI data and ii) the sample memorization inclination inherent in neural networks. These problems may hinder MIL models from adequate and efficient training, suppressing the continuous performance promotion of classification models on WSIs. Inspired by the basic idea of Mixup, this paper proposes a new Pseudo-bag Mixup (PseMix) data augmentation scheme to improve the training of MIL models. This scheme generalizes the Mixup strategy for general images to special WSIs via pseudo-bags so as to be applied in MIL-based WSI classification. Cooperated by pseudo-bags, our PseMix fulfills the critical size alignment and semantic alignment in Mixup strategy. Moreover, it is designed as an efficient and decoupled method, neither involving time-consuming operations nor relying on MIL model predictions. Comparative experiments and ablation studies are specially designed to evaluate the effectiveness and advantages of our PseMix. Experimental results show that PseMix could often assist state-of-the-art MIL networks to refresh their classification performance on WSIs. Besides, it could also boost the generalization performance of MIL models in special test scenarios, and promote their robustness to patch occlusion and label noise. Our source code is available at https://github.com/liupei101/PseMix.
Collapse
|
13
|
Qiu L, Zhao L, Zhao W, Zhao J. Dual-space disentangled-multimodal network (DDM-net) for glioma diagnosis and prognosis with incomplete pathology and genomic data. Phys Med Biol 2024; 69:085028. [PMID: 38595094 DOI: 10.1088/1361-6560/ad37ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Objective. Effective fusion of histology slides and molecular profiles from genomic data has shown great potential in the diagnosis and prognosis of gliomas. However, it remains challenging to explicitly utilize the consistent-complementary information among different modalities and create comprehensive representations of patients. Additionally, existing researches mainly focus on complete multi-modality data and usually fail to construct robust models for incomplete samples.Approach. In this paper, we propose adual-space disentangled-multimodal network (DDM-net)for glioma diagnosis and prognosis. DDM-net disentangles the latent features generated by two separate variational autoencoders (VAEs) into common and specific components through a dual-space disentangled approach, facilitating the construction of comprehensive representations of patients. More importantly, DDM-net imputes the unavailable modality in the latent feature space, making it robust to incomplete samples.Main results. We evaluated our approach on the TCGA-GBMLGG dataset for glioma grading and survival analysis tasks. Experimental results demonstrate that the proposed method achieves superior performance compared to state-of-the-art methods, with a competitive AUC of 0.952 and a C-index of 0.768.Significance. The proposed model may help the clinical understanding of gliomas and can serve as an effective fusion model with multimodal data. Additionally, it is capable of handling incomplete samples, making it less constrained by clinical limitations.
Collapse
Affiliation(s)
- Lu Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lu Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wangyuan Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
14
|
Zheng TL, Sha JC, Deng Q, Geng S, Xiao SY, Yang WJ, Byrne CD, Targher G, Li YY, Wang XX, Wu D, Zheng MH. Object detection: A novel AI technology for the diagnosis of hepatocyte ballooning. Liver Int 2024; 44:330-343. [PMID: 38014574 DOI: 10.1111/liv.15799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has reached epidemic proportions worldwide and is the most frequent cause of chronic liver disease in developed countries. Within the spectrum of liver disease in MAFLD, steatohepatitis is a progressive form of liver disease and hepatocyte ballooning (HB) is a cardinal pathological feature of steatohepatitis. The accurate and reproducible diagnosis of HB is therefore critical for the early detection and treatment of steatohepatitis. Currently, a diagnosis of HB relies on pathological examination by expert pathologists, which may be a time-consuming and subjective process. Hence, there has been interest in developing automated methods for diagnosing HB. This narrative review briefly discusses the development of artificial intelligence (AI) technology for diagnosing fatty liver disease pathology over the last 30 years and provides an overview of the current research status of AI algorithms for the identification of HB, including published articles on traditional machine learning algorithms and deep learning algorithms. This narrative review also provides a summary of object detection algorithms, including the principles, historical developments, and applications in the medical image analysis. The potential benefits of object detection algorithms for HB diagnosis (specifically those combined with a transformer architecture) are discussed, along with the future directions of object detection algorithms in HB diagnosis and the potential applications of generative AI on transformer architecture in this field. In conclusion, object detection algorithms have huge potential for the identification of HB and could make the diagnosis of MAFLD more accurate and efficient in the near future.
Collapse
Affiliation(s)
- Tian-Lei Zheng
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun-Cheng Sha
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Deng
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Shi Geng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Wen-Jun Yang
- Department of Pathology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- IRCSS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Yang-Yang Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang-Xue Wang
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Di Wu
- Department of Pathology, Xuzhou Central Hospital, Xuzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
15
|
Xinsen L, Yang K, Bingzhi C, Xiuhong C, Xinling L, Xinyao X, Jinlin C, Ming T, Pengtao L, Zheng X, Linying C. Vague-Segment Technique: Automatic Computation of Tumor Stroma Ratio for Breast Cancer on Whole Slides. IEEE J Biomed Health Inform 2024; 28:905-916. [PMID: 38079367 DOI: 10.1109/jbhi.2023.3341101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The calculation of Tumor Stroma Ratio (TSR) is a challenging medical issue that could improve predictions of neoadjuvant chemotherapy benefits and patient prognoses. Although several studies on breast cancer and deep learning methods have achieved promising results, the drawbacks that pixel-level semantic segmentation processes could not extract core tumor regions containing both tumor pixels and stroma pixels make it difficult to accurately calculate TSR. In this paper, we propose a Vague-Segment Technique (VST) consisting of a designed SwinV2UNet module and a modified Suzuki algorithm. Specifically, the SwinV2UNet identifies tumor pixels and generate pixel-level classification results, based on which the modified Suzuki algorithm extracts the contour of core tumor regions in terms of cosine angle. Through this way, VST obtains vaguely segmentation results of core tumor regions containing both tumor pixels and stroma pixels, where the TSR could be calculated by the formula of Intersection over Union (IOU). For the training and evaluation, we utilize the well-known The Cancer Genome Atlas (TCGA) database to create an annotated dataset, while 150 images with TSR annotations from real cases are also collected. The experimental results illustrate that the proposed VST could generate better tumor identification results compared with state-of-the-art methods, where the extracted core tumor regions lead to more consistencies of calculated TSR with senior experts compared to junior pathologists. The experimental results demonstrate the superiority of our proposed pipeline, which has promise for future clinical application.
Collapse
|
16
|
Shi J, Tang L, Gao Z, Li Y, Wang C, Gong T, Li C, Fu H. MG-Trans: Multi-Scale Graph Transformer With Information Bottleneck for Whole Slide Image Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3871-3883. [PMID: 37682644 DOI: 10.1109/tmi.2023.3313252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Multiple instance learning (MIL)-based methods have become the mainstream for processing the megapixel-sized whole slide image (WSI) with pyramid structure in the field of digital pathology. The current MIL-based methods usually crop a large number of patches from WSI at the highest magnification, resulting in a lot of redundancy in the input and feature space. Moreover, the spatial relations between patches can not be sufficiently modeled, which may weaken the model's discriminative ability on fine-grained features. To solve the above limitations, we propose a Multi-scale Graph Transformer (MG-Trans) with information bottleneck for whole slide image classification. MG-Trans is composed of three modules: patch anchoring module (PAM), dynamic structure information learning module (SILM), and multi-scale information bottleneck module (MIBM). Specifically, PAM utilizes the class attention map generated from the multi-head self-attention of vision Transformer to identify and sample the informative patches. SILM explicitly introduces the local tissue structure information into the Transformer block to sufficiently model the spatial relations between patches. MIBM effectively fuses the multi-scale patch features by utilizing the principle of information bottleneck to generate a robust and compact bag-level representation. Besides, we also propose a semantic consistency loss to stabilize the training of the whole model. Extensive studies on three subtyping datasets and seven gene mutation detection datasets demonstrate the superiority of MG-Trans.
Collapse
|
17
|
Atabansi CC, Nie J, Liu H, Song Q, Yan L, Zhou X. A survey of Transformer applications for histopathological image analysis: New developments and future directions. Biomed Eng Online 2023; 22:96. [PMID: 37749595 PMCID: PMC10518923 DOI: 10.1186/s12938-023-01157-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
Transformers have been widely used in many computer vision challenges and have shown the capability of producing better results than convolutional neural networks (CNNs). Taking advantage of capturing long-range contextual information and learning more complex relations in the image data, Transformers have been used and applied to histopathological image processing tasks. In this survey, we make an effort to present a thorough analysis of the uses of Transformers in histopathological image analysis, covering several topics, from the newly built Transformer models to unresolved challenges. To be more precise, we first begin by outlining the fundamental principles of the attention mechanism included in Transformer models and other key frameworks. Second, we analyze Transformer-based applications in the histopathological imaging domain and provide a thorough evaluation of more than 100 research publications across different downstream tasks to cover the most recent innovations, including survival analysis and prediction, segmentation, classification, detection, and representation. Within this survey work, we also compare the performance of CNN-based techniques to Transformers based on recently published papers, highlight major challenges, and provide interesting future research directions. Despite the outstanding performance of the Transformer-based architectures in a number of papers reviewed in this survey, we anticipate that further improvements and exploration of Transformers in the histopathological imaging domain are still required in the future. We hope that this survey paper will give readers in this field of study a thorough understanding of Transformer-based techniques in histopathological image analysis, and an up-to-date paper list summary will be provided at https://github.com/S-domain/Survey-Paper .
Collapse
Affiliation(s)
| | - Jing Nie
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China.
| | - Haijun Liu
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
| | - Qianqian Song
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
| | - Lingfeng Yan
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
| | - Xichuan Zhou
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
18
|
Zheng Y, Li J, Shi J, Xie F, Huai J, Cao M, Jiang Z. Kernel Attention Transformer for Histopathology Whole Slide Image Analysis and Assistant Cancer Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2726-2739. [PMID: 37018112 DOI: 10.1109/tmi.2023.3264781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transformer has been widely used in histopathology whole slide image analysis. However, the design of token-wise self-attention and positional embedding strategy in the common Transformer limits its effectiveness and efficiency when applied to gigapixel histopathology images. In this paper, we propose a novel kernel attention Transformer (KAT) for histopathology WSI analysis and assistant cancer diagnosis. The information transmission in KAT is achieved by cross-attention between the patch features and a set of kernels related to the spatial relationship of the patches on the whole slide images. Compared to the common Transformer structure, KAT can extract the hierarchical context information of the local regions of the WSI and provide diversified diagnosis information. Meanwhile, the kernel-based cross-attention paradigm significantly reduces the computational amount. The proposed method was evaluated on three large-scale datasets and was compared with 8 state-of-the-art methods. The experimental results have demonstrated the proposed KAT is effective and efficient in the task of histopathology WSI analysis and is superior to the state-of-the-art methods.
Collapse
|
19
|
Li X, Lv S, Li M, Zhang J, Jiang Y, Qin Y, Luo H, Yin S. SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2274-2285. [PMID: 37027574 DOI: 10.1109/tmi.2023.3247543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Knee segmentation and landmark localization from 3D MRI are two significant tasks for diagnosis and treatment of knee diseases. With the development of deep learning, Convolutional Neural Network (CNN) based methods have become the mainstream. However, the existing CNN methods are mostly single-task methods. Due to the complex structure of bone, cartilage and ligament in the knee, it is challenging to complete the segmentation or landmark localization alone. And establishing independent models for all tasks will bring difficulties for surgeon's clinical using. In this paper, a Spatial Dependence Multi-task Transformer (SDMT) network is proposed for 3D knee MRI segmentation and landmark localization. We use a shared encoder for feature extraction, then SDMT utilizes the spatial dependence of segmentation results and landmark position to mutually promote the two tasks. Specifically, SDMT adds spatial encoding to the features, and a task hybrided multi-head attention mechanism is designed, in which the attention heads are divided into the inter-task attention head and the intra-task attention head. The two attention head deal with the spatial dependence between two tasks and correlation within the single task, respectively. Finally, we design a dynamic weight multi-task loss function to balance the training process of two task. The proposed method is validated on our 3D knee MRI multi-task datasets. Dice can reach 83.91% in the segmentation task, and MRE can reach 2.12 mm in the landmark localization task, it is competitive and superior over other state-of-the-art single-task methods.
Collapse
|
20
|
Kang H, Yang M, Zhang F, Xu H, Ren S, Li J, Chen D, Wang F, Li D, Chen X. Identification lymph node metastasis in esophageal squamous cell carcinoma using whole slide images and a hybrid network of multiple instance and transfer learning. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|