1
|
Hu Y, Sirinukunwattana K, Li B, Gaitskell K, Domingo E, Bonnaffé W, Wojciechowska M, Wood R, Alham NK, Malacrino S, Woodcock DJ, Verrill C, Ahmed A, Rittscher J. Self-interactive learning: Fusion and evolution of multi-scale histomorphology features for molecular traits prediction in computational pathology. Med Image Anal 2025; 101:103437. [PMID: 39798526 DOI: 10.1016/j.media.2024.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025]
Abstract
Predicting disease-related molecular traits from histomorphology brings great opportunities for precision medicine. Despite the rich information present in histopathological images, extracting fine-grained molecular features from standard whole slide images (WSI) is non-trivial. The task is further complicated by the lack of annotations for subtyping and contextual histomorphological features that might span multiple scales. This work proposes a novel multiple-instance learning (MIL) framework capable of WSI-based cancer morpho-molecular subtyping by fusion of different-scale features. Our method, debuting as Inter-MIL, follows a weakly-supervised scheme. It enables the training of the patch-level encoder for WSI in a task-aware optimisation procedure, a step normally not modelled in most existing MIL-based WSI analysis frameworks. We demonstrate that optimising the patch-level encoder is crucial to achieving high-quality fine-grained and tissue-level subtyping results and offers a significant improvement over task-agnostic encoders. Our approach deploys a pseudo-label propagation strategy to update the patch encoder iteratively, allowing discriminative subtype features to be learned. This mechanism also empowers extracting fine-grained attention within image tiles (the small patches), a task largely ignored in most existing weakly supervised-based frameworks. With Inter-MIL, we carried out four challenging cancer molecular subtyping tasks in the context of ovarian, colorectal, lung, and breast cancer. Extensive evaluation results show that Inter-MIL is a robust framework for cancer morpho-molecular subtyping with superior performance compared to several recently proposed methods, in small dataset scenarios where the number of available training slides is less than 100. The iterative optimisation mechanism of Inter-MIL significantly improves the quality of the image features learned by the patch embedded and generally directs the attention map to areas that better align with experts' interpretation, leading to the identification of more reliable histopathology biomarkers. Moreover, an external validation cohort is used to verify the robustness of Inter-MIL on molecular trait prediction.
Collapse
Affiliation(s)
- Yang Hu
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| | - Korsuk Sirinukunwattana
- Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Bin Li
- Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Kezia Gaitskell
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, UK
| | - Willem Bonnaffé
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Marta Wojciechowska
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Ruby Wood
- Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Nasullah Khalid Alham
- Department of Engineering Science, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Stefano Malacrino
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dan J Woodcock
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, UK
| | - Ahmed Ahmed
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Nuffield Department of Womenś and Reproductive Health, University of Oxford, Oxford, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, UK
| | - Jens Rittscher
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
He K, Mao R, Huang Y, Gong T, Li C, Cambria E. Template-Free Prompting for Few-Shot Named Entity Recognition via Semantic-Enhanced Contrastive Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:18357-18369. [PMID: 37751350 DOI: 10.1109/tnnls.2023.3314807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Prompt tuning has achieved great success in various sentence-level classification tasks by using elaborated label word mappings and prompt templates. However, for solving token-level classification tasks, e.g., named entity recognition (NER), previous research, which utilizes N-gram traversal for prompting all spans with all possible entity types, is time-consuming. To this end, we propose a novel prompt-based contrastive learning method for few-shot NER without template construction and label word mappings. First, we leverage external knowledge to initialize semantic anchors for each entity type. These anchors are simply appended with input sentence embeddings as template-free prompts (TFPs). Then, the prompts and sentence embeddings are in-context optimized with our proposed semantic-enhanced contrastive loss. Our proposed loss function enables contrastive learning in few-shot scenarios without requiring a significant number of negative samples. Moreover, it effectively addresses the issue of conventional contrastive learning, where negative instances with similar semantics are erroneously pushed apart in natural language processing (NLP)-related tasks. We examine our method in label extension (LE), domain-adaption (DA), and low-resource generalization evaluation tasks with six public datasets and different settings, achieving state-of-the-art (SOTA) results in most cases.
Collapse
|
3
|
Lu Z, Tang K, Wu Y, Zhang X, An Z, Zhu X, Feng Q, Zhao Y. BreasTDLUSeg: A coarse-to-fine framework for segmentation of breast terminal duct lobular units on histopathological whole-slide images. Comput Med Imaging Graph 2024; 118:102432. [PMID: 39461144 DOI: 10.1016/j.compmedimag.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/29/2024] [Accepted: 08/31/2024] [Indexed: 10/29/2024]
Abstract
Automatic segmentation of breast terminal duct lobular units (TDLUs) on histopathological whole-slide images (WSIs) is crucial for the quantitative evaluation of TDLUs in the diagnostic and prognostic analysis of breast cancer. However, TDLU segmentation remains a great challenge due to its highly heterogeneous sizes, structures, and morphologies as well as the small areas on WSIs. In this study, we propose BreasTDLUSeg, an efficient coarse-to-fine two-stage framework based on multi-scale attention to achieve localization and precise segmentation of TDLUs on hematoxylin and eosin (H&E)-stained WSIs. BreasTDLUSeg consists of two networks: a superpatch-based patch-level classification network (SPPC-Net) and a patch-based pixel-level segmentation network (PPS-Net). SPPC-Net takes a superpatch as input and adopts a sub-region classification head to classify each patch within the superpatch as TDLU positive or negative. PPS-Net takes the TDLU positive patches derived from SPPC-Net as input. PPS-Net deploys a multi-scale CNN-Transformer as an encoder to learn enhanced multi-scale morphological representations and an upsampler to generate pixel-wise segmentation masks for the TDLU positive patches. We also constructed two breast cancer TDLU datasets containing a total of 530 superpatch images with patch-level annotations and 2322 patch images with pixel-level annotations to enable the development of TDLU segmentation methods. Experiments on the two datasets demonstrate that BreasTDLUSeg outperforms other state-of-the-art methods with the highest Dice similarity coefficients of 79.97% and 92.93%, respectively. The proposed method shows great potential to assist pathologists in the pathological analysis of breast cancer. An open-source implementation of our approach can be found at https://github.com/Dian-kai/BreasTDLUSeg.
Collapse
Affiliation(s)
- Zixiao Lu
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Wu
- Wormpex AI Research, Bellevue, WA 98004, USA
| | - Xiaoxuan Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziqi An
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiongfeng Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yinghua Zhao
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Sun J, Liu Y, Xi Y, Coatrieux G, Coatrieux JL, Ji X, Jiang L, Chen Y. Multi-grained contrastive representation learning for label-efficient lesion segmentation and onset time classification of acute ischemic stroke. Med Image Anal 2024; 97:103250. [PMID: 39096842 DOI: 10.1016/j.media.2024.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024]
Abstract
Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyze the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.
Collapse
Affiliation(s)
- Jiarui Sun
- Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
| | - Yuhao Liu
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Yan Xi
- Jiangsu First-Imaging Medical Equipment Co., Ltd., Nanjing 210009, China
| | | | - Jean-Louis Coatrieux
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, F-35000 Rennes, France; Centre de Recherche en Information Biomédicale Sino-francais, 35042 Rennes, France
| | - Xu Ji
- Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China; Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210096, China.
| | - Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Yang Chen
- Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China; Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, Nanjing 210096, China
| |
Collapse
|
5
|
Fang J. A semi-supervised segmentation method for microscopic hyperspectral pathological images based on multi-consistency learning. Front Oncol 2024; 14:1396887. [PMID: 38962265 PMCID: PMC11220190 DOI: 10.3389/fonc.2024.1396887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024] Open
Abstract
Pathological images are considered the gold standard for clinical diagnosis and cancer grading. Automatic segmentation of pathological images is a fundamental and crucial step in constructing powerful computer-aided diagnostic systems. Medical microscopic hyperspectral pathological images can provide additional spectral information, further distinguishing different chemical components of biological tissues, offering new insights for accurate segmentation of pathological images. However, hyperspectral pathological images have higher resolution and larger area, and their annotation requires more time and clinical experience. The lack of precise annotations limits the progress of research in pathological image segmentation. In this paper, we propose a novel semi-supervised segmentation method for microscopic hyperspectral pathological images based on multi-consistency learning (MCL-Net), which combines consistency regularization methods with pseudo-labeling techniques. The MCL-Net architecture employs a shared encoder and multiple independent decoders. We introduce a Soft-Hard pseudo-label generation strategy in MCL-Net to generate pseudo-labels that are closer to real labels for pathological images. Furthermore, we propose a multi-consistency learning strategy, treating pseudo-labels generated by the Soft-Hard process as real labels, by promoting consistency between predictions of different decoders, enabling the model to learn more sample features. Extensive experiments in this paper demonstrate the effectiveness of the proposed method, providing new insights for the segmentation of microscopic hyperspectral tissue pathology images.
Collapse
Affiliation(s)
- Jinghui Fang
- College of Information Science and Engineering, Hohai University, Nanjing, China
| |
Collapse
|
6
|
He K, Mao R, Gong T, Cambria E, Li C. JCBIE: a joint continual learning neural network for biomedical information extraction. BMC Bioinformatics 2022; 23:549. [PMID: 36536280 PMCID: PMC9761970 DOI: 10.1186/s12859-022-05096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Extracting knowledge from heterogeneous data sources is fundamental for the construction of structured biomedical knowledge graphs (BKGs), where entities and relations are represented as nodes and edges in the graphs, respectively. Previous biomedical knowledge extraction methods simply considered limited entity types and relations by using a task-specific training set, which is insufficient for large-scale BKGs development and downstream task applications in different scenarios. To alleviate this issue, we propose a joint continual learning biomedical information extraction (JCBIE) network to extract entities and relations from different biomedical information datasets. By empirically studying different joint learning and continual learning strategies, the proposed JCBIE can learn and expand different types of entities and relations from different datasets. JCBIE uses two separated encoders in joint-feature extraction, hence can effectively avoid the feature confusion problem comparing with using one hard-parameter sharing encoder. Specifically, it allows us to adopt entity augmented inputs to establish the interaction between named entity recognition and relation extraction. Finally, a novel evaluation mechanism is proposed for measuring cross-corpus generalization errors, which was ignored by traditional evaluation methods. Our empirical studies show that JCBIE achieves promising performance when continual learning strategy is adopted with multiple corpora.
Collapse
Affiliation(s)
- Kai He
- grid.43169.390000 0001 0599 1243School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi China ,grid.43169.390000 0001 0599 1243Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China ,grid.43169.390000 0001 0599 1243National Engineering Lab for Big Data Analytics, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Rui Mao
- grid.59025.3b0000 0001 2224 0361School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Tieliang Gong
- grid.43169.390000 0001 0599 1243School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi China ,grid.43169.390000 0001 0599 1243Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China ,grid.43169.390000 0001 0599 1243National Engineering Lab for Big Data Analytics, Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Erik Cambria
- grid.59025.3b0000 0001 2224 0361School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chen Li
- grid.43169.390000 0001 0599 1243School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi China ,grid.43169.390000 0001 0599 1243Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi China ,grid.43169.390000 0001 0599 1243National Engineering Lab for Big Data Analytics, Xi’an Jiaotong University, Xi’an, Shaanxi China
| |
Collapse
|