1
|
Mercier C, Faisan S, Pron A, Girard N, Auzias G, Chonavel T, Rousseau F. Intersection-based slice motion estimation for fetal brain imaging. Comput Biol Med 2025; 190:110005. [PMID: 40112563 DOI: 10.1016/j.compbiomed.2025.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Fetal MRI offers a broad spectrum of applications, including the investigation of fetal brain development and facilitation of early diagnosis. However, image quality is often compromised by motion artifacts arising from both maternal and fetal movement. To mitigate these artifacts, fetal MRI typically employs ultrafast acquisition sequences. This results in the acquisition of three (or more) orthogonal stacks along different spatial axes. Nonetheless, inter-slice motion can still occur. If left uncorrected, such motion can introduce artifacts in the reconstructed 3D volume. Existing motion-correction approaches often rely on a two-step iterative process involving registration followed by reconstruction. They tend to detect and remove a large number of misaligned slices, resulting in poor reconstruction quality. This paper proposes a novel reconstruction-independent method for motion correction. Our approach benefits from the intersection of orthogonal slices and estimates motion for each slice by minimizing the difference between the intensity profiles along their intersections. To address potential misalignments, we present an innovative machine learning-based classifier for identifying misaligned slices. The parameters of these slices are then corrected using a multistart optimization approach. Quantitative evaluation on simulated datasets demonstrates very low registration errors. Qualitative analysis on real data further highlights the effectiveness of our approach compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Chloe Mercier
- IMT Atlantique, Lab-STICC UMR CNRS 6285, Brest, France.
| | - Sylvain Faisan
- ICube Laboratory, University of Strasbourg, CNRS, Strasbourg, France.
| | - Alexandre Pron
- Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone, Marseille, France.
| | - Nadine Girard
- Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone, Marseille, France.
| | - Guillaume Auzias
- Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone, Marseille, France.
| | | | | |
Collapse
|
2
|
Zeng Q, Liu W, Li B, Didier R, Grant PE, Karimi D. Towards automatic US-MR fetal brain image registration with learning-based methods. Neuroimage 2025; 310:121104. [PMID: 40058533 PMCID: PMC12021370 DOI: 10.1016/j.neuroimage.2025.121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/30/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Fetal brain imaging is essential for prenatal care, with ultrasound (US) and magnetic resonance imaging (MRI) providing complementary strengths. While MRI has superior soft tissue contrast, US offers portable and inexpensive screening of neurological abnormalities. Despite the great potential synergy of combined fetal brain US and MR imaging to enhance diagnostic accuracy, little effort has been made to integrate these modalities. An essential step towards this integration is accurate automatic spatial alignment, which is technically very challenging due to the inherent differences in contrast and modality-specific imaging artifacts. In this work, we present a novel atlas-assisted multi-task learning technique to address this problem. Instead of training the registration model solely with intra-subject US-MR image pairs, our approach enables the network to also learn from domain-specific image-to-atlas registration tasks. This leads to an end-to-end multi-task learning framework with superior registration performance. Our proposed method was validated using a dataset of same-day intra-subject 3D US-MR image pairs. The results show that our method outperforms conventional optimization-based methods and recent learning-based techniques for rigid image registration. Specifically, the average target registration error for our method is less than 4 mm, which is significantly better than existing methods. Extensive experiments have also shown that our method has a much wider capture range and is robust to brain abnormalities. Given these advantages over existing techniques, our method is more suitable for deployment in clinical workflows and may contribute to streamlined multimodal imaging pipelines for fetal brain assessment.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Radiology, Boston Children's Hospital, USA; Harvard Medical School, USA.
| | - Weide Liu
- Department of Radiology, Boston Children's Hospital, USA; Harvard Medical School, USA
| | - Bo Li
- Department of Radiology, Boston Children's Hospital, USA; Harvard Medical School, USA
| | - Ryne Didier
- Department of Radiology, Boston Children's Hospital, USA; Harvard Medical School, USA
| | - P Ellen Grant
- Department of Radiology, Boston Children's Hospital, USA; Harvard Medical School, USA
| | - Davood Karimi
- Department of Radiology, Boston Children's Hospital, USA; Harvard Medical School, USA
| |
Collapse
|
3
|
Kertes N, Zaffrani-Reznikov Y, Afacan O, Kurugol S, Warfield SK, Freiman M. IVIM-Morph: Motion-compensated quantitative Intra-voxel Incoherent Motion (IVIM) analysis for functional fetal lung maturity assessment from diffusion-weighted MRI data. Med Image Anal 2025; 101:103445. [PMID: 39756266 PMCID: PMC11875909 DOI: 10.1016/j.media.2024.103445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/07/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Quantitative analysis of pseudo-diffusion in diffusion-weighted magnetic resonance imaging (DWI) data shows potential for assessing fetal lung maturation and generating valuable imaging biomarkers. Yet, the clinical utility of DWI data is hindered by unavoidable fetal motion during acquisition. We present IVIM-morph, a self-supervised deep neural network model for motion-corrected quantitative analysis of DWI data using the Intra-voxel Incoherent Motion (IVIM) model. IVIM-morph combines two sub-networks, a registration sub-network, and an IVIM model fitting sub-network, enabling simultaneous estimation of IVIM model parameters and motion. To promote physically plausible image registration, we introduce a biophysically informed loss function that effectively balances registration and model-fitting quality. We validated the efficacy of IVIM-morph by establishing a correlation between the predicted IVIM model parameters of the lung and gestational age (GA) using fetal DWI data of 39 subjects. Our approach was compared against six baseline methods: (1) no motion compensation, (2) affine registration of all DWI images to the initial image, (3) deformable registration of all DWI images to the initial image, (4) deformable registration of each DWI image to its preceding image in the sequence, (5) iterative deformable motion compensation combined with IVIM model parameter estimation, and (6) self-supervised deep-learning-based deformable registration. IVIM-morph exhibited a notably improved correlation with gestational age (GA) when performing in-vivo quantitative analysis of fetal lung DWI data during the canalicular phase. Specifically, over 2 test groups of cases, it achieved an Rf2 of 0.44 and 0.52, outperforming the values of 0.27 and 0.25, 0.25 and 0.00, 0.00 and 0.00, 0.38 and 0.00, and 0.07 and 0.14 obtained by other methods. IVIM-morph shows potential in developing valuable biomarkers for non-invasive assessment of fetal lung maturity with DWI data. Moreover, its adaptability opens the door to potential applications in other clinical contexts where motion compensation is essential for quantitative DWI analysis. The IVIM-morph code is readily available at: https://github.com/TechnionComputationalMRILab/qDWI-Morph.
Collapse
Affiliation(s)
- Noga Kertes
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | | | | | | | | | - Moti Freiman
- Faculty of Biomedical Engineering, Technion, Haifa, Israel.
| |
Collapse
|
4
|
Xu X, Sun C, Yu H, Yan G, Zhu Q, Kong X, Pan Y, Xu H, Zheng T, Zhou C, Wang Y, Xiao J, Chen R, Li M, Zhang S, Hu H, Zou Y, Wang J, Wang G, Wu D. Site effects in multisite fetal brain MRI: morphological insights into early brain development. Eur Radiol 2025; 35:1830-1842. [PMID: 39299951 DOI: 10.1007/s00330-024-11084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE To evaluate multisite effects on fetal brain MRI. Specifically, to identify crucial acquisition factors affecting fetal brain structural measurements and developmental patterns, while assessing the effectiveness of existing harmonization methods in mitigating site effects. MATERIALS AND METHODS Between May 2017 and March 2022, T2-weighted fast spin-echo sequences in-utero MRI were performed on healthy fetuses from retrospectively recruited pregnant volunteers on four different scanners at four sites. A generalized additive model (GAM) was used to quantitatively assess site effects, including field strength (FS), manufacturer (M), in-plane resolution (R), and slice thickness (ST), on subcortical volume and cortical morphological measurements, including cortical thickness, curvature, and sulcal depth. Growth models were selected to elucidate the developmental trajectories of these morphological measurements. Welch's test was performed to evaluate the influence of site effects on developmental trajectories. The comBat-GAM harmonization method was applied to mitigate site-related biases. RESULTS The final analytic sample consisted of 340 MRI scans from 218 fetuses (mean GA, 30.1 weeks ± 4.4 [range, 21.7-40 weeks]). GAM results showed that lower FS and lower spatial resolution led to overestimations in selected brain regions of subcortical volumes and cortical morphological measurements. Only the peak cortical thickness in developmental trajectories was significantly influenced by the effects of FS and R. Notably, ComBat-GAM harmonization effectively removed site effects while preserving developmental patterns. CONCLUSION Our findings pinpointed the key acquisition factors in in-utero fetal brain MRI and underscored the necessity of data harmonization when pooling multisite data for fetal brain morphology investigations. KEY POINTS Question How do specific site MRI acquisition factors affect fetal brain imaging? Finding Lower FS and spatial resolution overestimated subcortical volumes and cortical measurements. Cortical thickness in developmental trajectories was influenced by FS and in-plane resolution. Clinical relevance This study provides important guidelines for the fetal MRI community when scanning fetal brains and underscores the necessity of data harmonization of cross-center fetal studies.
Collapse
Affiliation(s)
- Xinyi Xu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Cong Sun
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Yu
- Dalian Municipal Women and Children's Medical Center (Group), Dalian, China
| | - Guohui Yan
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Zhu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianglei Kong
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yibin Pan
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Haoan Xu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Tianshu Zheng
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Chi Zhou
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yutian Wang
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Jiaxin Xiao
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ruike Chen
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Mingyang Li
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu Zou
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jingshi Wang
- Dalian Municipal Women and Children's Medical Center (Group), Dalian, China.
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Uus A, Neves Silva S, Aviles Verdera J, Payette K, Hall M, Colford K, Luis A, Sousa H, Ning Z, Roberts T, McElroy S, Deprez M, Hajnal J, Rutherford M, Story L, Hutter J. Scanner-based real-time three-dimensional brain + body slice-to-volume reconstruction for T2-weighted 0.55-T low-field fetal magnetic resonance imaging. Pediatr Radiol 2025; 55:556-569. [PMID: 39853394 PMCID: PMC11882667 DOI: 10.1007/s00247-025-06165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Motion correction methods based on slice-to-volume registration (SVR) for fetal magnetic resonance imaging (MRI) allow reconstruction of three-dimensional (3-D) isotropic images of the fetal brain and body. However, all existing SVR methods are confined to research settings, which limits clinical integration. Furthermore, there have been no reported SVR solutions for low-field 0.55-T MRI. OBJECTIVE Integration of automated SVR motion correction methods directly into fetal MRI scanning process via the Gadgetron framework to enable automated T2-weighted (T2W) 3-D fetal brain and body reconstruction in the low-field 0.55-T MRI scanner within the duration of the scan. MATERIALS AND METHODS A deep learning fully automated pipeline was developed for T2W 3-D rigid and deformable (D/SVR) reconstruction of the fetal brain and body of 0.55-T T2W datasets. Next, it was integrated into 0.55-T low-field MRI scanner environment via a Gadgetron workflow that enables launching of the reconstruction process directly during scanning in real-time. RESULTS During prospective testing on 12 cases (22-40 weeks gestational age), the fetal brain and body reconstructions were available on average 6:42 ± 3:13 min after the acquisition of the final stack and could be assessed and archived on the scanner console during the ongoing fetal MRI scan. The output image data quality was rated as good to acceptable for interpretation. The retrospective testing of the pipeline on 83 0.55-T datasets demonstrated stable reconstruction quality for low-field MRI. CONCLUSION The proposed pipeline allows scanner-based prospective T2W 3-D motion correction for low-field 0.55-T fetal MRI via direct online integration into the scanner environment.
Collapse
Affiliation(s)
- Alena Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Sara Neves Silva
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Jordina Aviles Verdera
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Kelly Payette
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Megan Hall
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- Department of Women & Children's Health, King's College London, London, UK
| | - Kathleen Colford
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Aysha Luis
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Helena Sousa
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Zihan Ning
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Thomas Roberts
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sarah McElroy
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- MR Research Collaborations, Siemens (United Kingdom), Camberley, UK
| | - Maria Deprez
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mary Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Lisa Story
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- Department of Women & Children's Health, King's College London, London, UK
| | - Jana Hutter
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- Smart Imaging Lab, Radiological Institute, Universitätsklinikum Erlangen, Erlangen, Germany
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Miao Z, Zhang L, Tian J, Yang G, Hui H. Continuous implicit neural representation for arbitrary super-resolution of system matrix in magnetic particle imaging. Phys Med Biol 2025; 70:045012. [PMID: 39912345 DOI: 10.1088/1361-6560/ada419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025]
Abstract
Objective. Magnetic particle imaging (MPI) is a novel imaging technique that uses magnetic fields to detect tracer materials consisting of magnetic nanoparticles. System matrix (SM) based image reconstruction is essential for achieving high image quality in MPI. However, the time-consuming SM calibrations need to be repeated whenever the magnetic field's or nanoparticle's characteristics change. Accelerating this calibration process is therefore crucial. The most common acceleration approach involves undersampling during the SM calibration procedure, followed by super-resolution methods to recover the high-resolution SM. However, these methods typically require separate training of multiple models for different undersampling ratios, leading to increased storage and training time costs.Approach. We propose an arbitrary-scale SM super-resolution method based on continuous implicit neural representation (INR). Using INR, the SM is modeled as a continuous function in space, enabling arbitrary-scale super-resolution by sampling the function at different densities. A cross-frequency encoder is implemented to share SM frequency information and analyze contextual relationships, resulting in a more intelligent and efficient sampling strategy. Convolutional neural networks (CNNs) are utilized to learn and optimize the grid sampling process in INR, leveraging the advantage of CNNs in learning local feature associations and considering surrounding information comprehensively.Main results. Experimental results on OpenMPI demonstrate that our method outperforms existing methods and enables calibration at any scale with a single model. The proposed method achieves high accuracy and efficiency in SM recovery, even at high undersampling rates.Significance. The proposed method significantly reduces the storage and training time costs associated with SM calibration, making it more practical for real-world applications. By enabling arbitrary-scale super-resolution with a single model, our approach enhances the flexibility and efficiency of MPI systems, paving the way for more widespread adoption of MPI technology.
Collapse
Affiliation(s)
- Zhaoji Miao
- School of Computer Science and Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Liwen Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jie Tian
- School of Computer Science and Engineering, Southeast University, Nanjing 211189, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing 100190, People's Republic of China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
| | - Guanyu Yang
- School of Computer Science and Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- National Key Laboratory of Kidney Diseases, Beijing 100853, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
7
|
Chu J, Du C, Lin X, Zhang X, Wang L, Zhang Y, Wei H. Highly accelerated MRI via implicit neural representation guided posterior sampling of diffusion models. Med Image Anal 2025; 100:103398. [PMID: 39608250 DOI: 10.1016/j.media.2024.103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Reconstructing high-fidelity magnetic resonance (MR) images from under-sampled k-space is a commonly used strategy to reduce scan time. The posterior sampling of diffusion models based on the real measurement data holds significant promise of improved reconstruction accuracy. However, traditional posterior sampling methods often lack effective data consistency guidance, leading to inaccurate and unstable reconstructions. Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems by modeling a signal's attributes as a continuous function of spatial coordinates. In this study, we present a novel posterior sampler for diffusion models using INR, named DiffINR. The INR-based component incorporates both the diffusion prior distribution and the MRI physical model to ensure high data fidelity. DiffINR demonstrates superior performance on in-distribution datasets with remarkable accuracy, even under high acceleration factors (up to R = 12 in single-channel reconstruction). Furthermore, DiffINR exhibits excellent generalizability across various tissue contrasts and anatomical structures with low uncertainty. Overall, DiffINR significantly improves MRI reconstruction in terms of accuracy, generalizability and stability, paving the way for further accelerating MRI acquisition. Notably, our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
Collapse
Affiliation(s)
- Jiayue Chu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhe Du
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiyue Lin
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoqun Zhang
- Institute of Natural Sciences and School of Mathematical Sciences and MOE-LSC and SJTU-GenSci Joint Laboratory, Shanghai Jiao Tong University, Shanghai, China
| | - Lihui Wang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Kertes N, Zaffrani-Reznikov Y, Afacan O, Kurugol S, Warfield SK, Freiman M. IVIM-Morph: Motion-compensated quantitative Intra-voxel Incoherent Motion (IVIM) analysis for functional fetal lung maturity assessment from diffusion-weighted MRI data. ARXIV 2025:arXiv:2401.07126v3. [PMID: 38313196 PMCID: PMC10836081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Quantitative analysis of pseudo-diffusion in diffusion-weighted magnetic resonance imaging (DWI) data shows potential for assessing fetal lung maturation and generating valuable imaging biomarkers. Yet, the clinical utility of DWI data is hindered by unavoidable fetal motion during acquisition. We present IVIM-morph, a self-supervised deep neural network model for motion-corrected quantitative analysis of DWI data using the Intra-voxel Incoherent Motion (IVIM) model. IVIM-morph combines two sub-networks, a registration sub-network, and an IVIM model fitting sub-network, enabling simultaneous estimation of IVIM model parameters and motion. To promote physically plausible image registration, we introduce a biophysically informed loss function that effectively balances registration and model-fitting quality. We validated the efficacy of IVIM-morph by establishing a correlation between the predicted IVIM model parameters of the lung and gestational age (GA) using fetal DWI data of 39 subjects. Our approach was compared against six baseline methods: 1) no motion compensation, 2) affine registration of all DWI images to the initial image, 3) deformable registration of all DWI images to the initial image, 4) deformable registration of each DWI image to its preceding image in the sequence, 5) iterative deformable motion compensation combined with IVIM model parameter estimation, and 6) self-supervised deep-learning-based deformable registration. IVIM-morph exhibited a notably improved correlation with gestational age (GA) when performing in-vivo quantitative analysis of fetal lung DWI data during the canalicular phase. Specifically, over 2 test groups of cases, it achieved anR f 2 of 0.44 and 0.52, outperforming the values of 0.27 and 0.25, 0.25 and 0.00, 0.00 and 0.00, 0.38 and 0.00, and 0.07 and 0.14 obtained by other methods. IVIM-morph shows potential in developing valuable biomarkers for non-invasive assessment of fetal lung maturity with DWI data. Moreover, its adaptability opens the door to potential applications in other clinical contexts where motion compensation is essential for quantitative DWI analysis. The IVIM-morph code is readily available at:https://github.com/TechnionComputationalMRILab/qDWI-Morph.
Collapse
Affiliation(s)
- Noga Kertes
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | | | | | | | | | - Moti Freiman
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| |
Collapse
|
9
|
Zhu L, Chen Y, Liu L, Xing L, Yu L. Multi-Sensor Learning Enables Information Transfer Across Different Sensory Data and Augments Multi-Modality Imaging. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025; 47:288-304. [PMID: 39302777 PMCID: PMC11875987 DOI: 10.1109/tpami.2024.3465649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Multi-modality imaging is widely used in clinical practice and biomedical research to gain a comprehensive understanding of an imaging subject. Currently, multi-modality imaging is accomplished by post hoc fusion of independently reconstructed images under the guidance of mutual information or spatially registered hardware, which limits the accuracy and utility of multi-modality imaging. Here, we investigate a data-driven multi-modality imaging (DMI) strategy for synergetic imaging of CT and MRI. We reveal two distinct types of features in multi-modality imaging, namely intra- and inter-modality features, and present a multi-sensor learning (MSL) framework to utilize the crossover inter-modality features for augmented multi-modality imaging. The MSL imaging approach breaks down the boundaries of traditional imaging modalities and allows for optimal hybridization of CT and MRI, which maximizes the use of sensory data. We showcase the effectiveness of our DMI strategy through synergetic CT-MRI brain imaging. The principle of DMI is quite general and holds enormous potential for various DMI applications across disciplines.
Collapse
|
10
|
Suzuki Y, Koktzoglou I, Li Z, Jezzard P, Okell T. Improved visualization of intracranial distal arteries with multiple 2D slice dynamic ASL-MRA and super-resolution convolutional neural network. Magn Reson Med 2024; 92:2491-2505. [PMID: 39155401 DOI: 10.1002/mrm.30245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE To develop a novel framework to improve the visualization of distal arteries in arterial spin labeling (ASL) dynamic MRA. METHODS The attenuation of ASL blood signal due to the repetitive application of excitation RF pulses was minimized by splitting the acquisition volume into multiple thin 2D (M2D) slices, thereby reducing the exposure of the arterial blood magnetization to RF pulses while it flows within the brain. To improve the degraded vessel visualization in the slice direction due to the limited minimum achievable 2D slice thickness, a super-resolution (SR) convolutional neural network (CNN) was trained by using 3D time-of-flight (TOF)-MRA images from a large public dataset. And then, we applied domain transfer from 3D TOF-MRA to M2D ASL-MRA, while avoiding acquiring a large number of ASL-MRA data required for CNN training. RESULTS Compared to the conventional 3D ASL-MRA, far more distal arteries were visualized with higher signal intensity by using M2D ASL-MRA. In general, however, the vessel visualization with a conventional interpolation was prone to be blurry and unclear due to the limited spatial resolution in the slice direction, particularly in small vessels. Application of CNN-based SR transferred from 3D TOF-MRA to M2D ASL-MRA successfully addressed such a limitation and achieved clearer visualization of small vessels than conventional interpolation. CONCLUSION This study demonstrated that the proposed framework provides improved visualization of distal arteries in later dynamic phases, which will particularly benefit the application of this approach in patients with cerebrovascular disease who have slow blood flow.
Collapse
Affiliation(s)
- Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ioannis Koktzoglou
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Chen H, Kumaralingam L, Zhang S, Song S, Zhang F, Zhang H, Pham TT, Punithakumar K, Lou EHM, Zhang Y, Le LH, Zheng R. Neural implicit surface reconstruction of freehand 3D ultrasound volume with geometric constraints. Med Image Anal 2024; 98:103305. [PMID: 39168075 DOI: 10.1016/j.media.2024.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Three-dimensional (3D) freehand ultrasound (US) is a widely used imaging modality that allows non-invasive imaging of medical anatomy without radiation exposure. Surface reconstruction of US volume is vital to acquire the accurate anatomical structures needed for modeling, registration, and visualization. However, traditional methods cannot produce a high-quality surface due to image noise. Despite improvements in smoothness, continuity, and resolution from deep learning approaches, research on surface reconstruction in freehand 3D US is still limited. This study introduces FUNSR, a self-supervised neural implicit surface reconstruction method to learn signed distance functions (SDFs) from US volumes. In particular, FUNSR iteratively learns the SDFs by moving the 3D queries sampled around volumetric point clouds to approximate the surface, guided by two novel geometric constraints: sign consistency constraint and on-surface constraint with adversarial learning. Our approach has been thoroughly evaluated across four datasets to demonstrate its adaptability to various anatomical structures, including a hip phantom dataset, two vascular datasets and one publicly available prostate dataset. We also show that smooth and continuous representations greatly enhance the visual appearance of US data. Furthermore, we highlight the potential of our method to improve segmentation performance, and its robustness to noise distribution and motion perturbation.
Collapse
Affiliation(s)
- Hongbo Chen
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200050, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Logiraj Kumaralingam
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| | - Shuhang Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sheng Song
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fayi Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Haibin Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Thanh-Tu Pham
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Kumaradevan Punithakumar
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| | - Edmond H M Lou
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada; Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada.
| | - Rui Zheng
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
12
|
Sanchez T, Esteban O, Gomez Y, Pron A, Koob M, Dunet V, Girard N, Jakab A, Eixarch E, Auzias G, Bach Cuadra M. FetMRQC: A robust quality control system for multi-centric fetal brain MRI. Med Image Anal 2024; 97:103282. [PMID: 39053168 DOI: 10.1016/j.media.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis, allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled fetal motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing the outcome of subsequent studies. We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts' ratings using random forests. We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images from four clinical centers and 13 different scanners. Our study shows that FetMRQC's predictions generalize well to unseen data while being interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging, which has the potential to shed new insights on the developing human brain.
Collapse
Affiliation(s)
- Thomas Sanchez
- CIBM - Center for Biomedical Imaging, Switzerland; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Oscar Esteban
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yvan Gomez
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Spain; Department Woman-Mother-Child, CHUV, Lausanne, Switzerland
| | - Alexandre Pron
- Aix-Marseille Université, CNRS, Institut de Neurosciences de La Timone, Marseilles, France
| | - Mériam Koob
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nadine Girard
- Aix-Marseille Université, CNRS, Institut de Neurosciences de La Timone, Marseilles, France; Service de Neuroradiologie Diagnostique et Interventionnelle, Hôpital Timone, AP-HM, Marseilles, France
| | - Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; Research Priority Project Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zürich, Zurich, Switzerland
| | - Elisenda Eixarch
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Spain; IDIBAPS and CIBERER, Barcelona, Spain
| | - Guillaume Auzias
- Aix-Marseille Université, CNRS, Institut de Neurosciences de La Timone, Marseilles, France
| | - Meritxell Bach Cuadra
- CIBM - Center for Biomedical Imaging, Switzerland; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Sun S, Han K, You C, Tang H, Kong D, Naushad J, Yan X, Ma H, Khosravi P, Duncan JS, Xie X. Medical image registration via neural fields. Med Image Anal 2024; 97:103249. [PMID: 38963972 DOI: 10.1016/j.media.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Image registration is an essential step in many medical image analysis tasks. Traditional methods for image registration are primarily optimization-driven, finding the optimal deformations that maximize the similarity between two images. Recent learning-based methods, trained to directly predict transformations between two images, run much faster, but suffer from performance deficiencies due to domain shift. Here we present a new neural network based image registration framework, called NIR (Neural Image Registration), which is based on optimization but utilizes deep neural networks to model deformations between image pairs. NIR represents the transformation between two images with a continuous function implemented via neural fields, receiving a 3D coordinate as input and outputting the corresponding deformation vector. NIR provides two ways of generating deformation field: directly output a displacement vector field for general deformable registration, or output a velocity vector field and integrate the velocity field to derive the deformation field for diffeomorphic image registration. The optimal registration is discovered by updating the parameters of the neural field via stochastic mini-batch gradient descent. We describe several design choices that facilitate model optimization, including coordinate encoding, sinusoidal activation, coordinate sampling, and intensity sampling. NIR is evaluated on two 3D MR brain scan datasets, demonstrating highly competitive performance in terms of both registration accuracy and regularity. Compared to traditional optimization-based methods, our approach achieves better results in shorter computation times. In addition, our methods exhibit performance on a cross-dataset registration task, compared to the pre-trained learning-based methods.
Collapse
Affiliation(s)
- Shanlin Sun
- University of California, Irvine, Irvine, CA 92697, USA.
| | - Kun Han
- University of California, Irvine, Irvine, CA 92697, USA.
| | - Chenyu You
- Yale University, New Haven, CT 06520, USA.
| | - Hao Tang
- University of California, Irvine, Irvine, CA 92697, USA.
| | - Deying Kong
- University of California, Irvine, Irvine, CA 92697, USA.
| | | | - Xiangyi Yan
- University of California, Irvine, Irvine, CA 92697, USA.
| | - Haoyu Ma
- University of California, Irvine, Irvine, CA 92697, USA.
| | - Pooya Khosravi
- University of California, Irvine, Irvine, CA 92697, USA.
| | | | - Xiaohui Xie
- University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Yang C, Wang K, Wang Y, Dou Q, Yang X, Shen W. Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3211-3223. [PMID: 38625765 DOI: 10.1109/tmi.2024.3388559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Intraoperative imaging techniques for reconstructing deformable tissues in vivo are pivotal for advanced surgical systems. Existing methods either compromise on rendering quality or are excessively computationally intensive, often demanding dozens of hours to perform, which significantly hinders their practical application. In this paper, we introduce Fast Orthogonal Plane (Forplane), a novel, efficient framework based on neural radiance fields (NeRF) for the reconstruction of deformable tissues. We conceptualize surgical procedures as 4D volumes, and break them down into static and dynamic fields comprised of orthogonal neural planes. This factorization discretizes the four-dimensional space, leading to a decreased memory usage and faster optimization. A spatiotemporal importance sampling scheme is introduced to improve performance in regions with tool occlusion as well as large motions and accelerate training. An efficient ray marching method is applied to skip sampling among empty regions, significantly improving inference speed. Forplane accommodates both binocular and monocular endoscopy videos, demonstrating its extensive applicability and flexibility. Our experiments, carried out on two in vivo datasets, the EndoNeRF and Hamlyn datasets, demonstrate the effectiveness of our framework. In all cases, Forplane substantially accelerates both the optimization process (by over 100 times) and the inference process (by over 15 times) while maintaining or even improving the quality across a variety of non-rigid deformations. This significant performance improvement promises to be a valuable asset for future intraoperative surgical applications. The code of our project is now available at https://github.com/Loping151/ForPlane.
Collapse
|
15
|
Bai X, Wang H, Qin Y, Han J, Yu N. MatchMorph: A real-time pre- and intra-operative deformable image registration framework for MRI-guided surgery. Comput Biol Med 2024; 180:108948. [PMID: 39121681 DOI: 10.1016/j.compbiomed.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE The technological advancements in surgical robots compatible with magnetic resonance imaging (MRI) have created an indispensable demand for real-time deformable image registration (DIR) of pre- and intra-operative MRI, but there is a lack of relevant methods. Challenges arise from dimensionality mismatch, resolution discrepancy, non-rigid deformation and requirement for real-time registration. METHODS In this paper, we propose a real-time DIR framework called MatchMorph, specifically designed for the registration of low-resolution local intraoperative MRI and high-resolution global preoperative MRI. Firstly, a super-resolution network based on global inference is developed to enhance the resolution of intraoperative MRI to the same as preoperative MRI, thus resolving the resolution discrepancy. Secondly, a fast-matching algorithm is designed to identify the optimal position of the intraoperative MRI within the corresponding preoperative MRI to address the dimensionality mismatch. Further, a cross-attention-based dual-stream DIR network is constructed to manipulate the deformation between pre- and intra-operative MRI, real-timely. RESULTS We conducted comprehensive experiments on publicly available datasets IXI and OASIS to evaluate the performance of the proposed MatchMorph framework. Compared to the state-of-the-art (SOTA) network TransMorph, the designed dual-stream DIR network of MatchMorph achieved superior performance with a 1.306 mm smaller HD and a 0.07 mm smaller ASD score on the IXI dataset. Furthermore, the MatchMorph framework demonstrates an inference speed of approximately 280 ms. CONCLUSIONS The qualitative and quantitative registration results obtained from high-resolution global preoperative MRI and simulated low-resolution local intraoperative MRI validated the effectiveness and efficiency of the proposed MatchMorph framework.
Collapse
Affiliation(s)
- Xinhao Bai
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518083, China
| | - Hongpeng Wang
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518083, China
| | - Yanding Qin
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518083, China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518083, China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China; Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, 518083, China.
| |
Collapse
|
16
|
Calixto C, Taymourtash A, Karimi D, Snoussi H, Velasco-Annis C, Jaimes C, Gholipour A. Advances in Fetal Brain Imaging. Magn Reson Imaging Clin N Am 2024; 32:459-478. [PMID: 38944434 PMCID: PMC11216711 DOI: 10.1016/j.mric.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Over the last 20 years, there have been remarkable developments in fetal brain MR imaging analysis methods. This article delves into the specifics of structural imaging, diffusion imaging, functional MR imaging, and spectroscopy, highlighting the latest advancements in motion correction, fetal brain development atlases, and the challenges and innovations. Furthermore, this article explores the clinical applications of these advanced imaging techniques in comprehending and diagnosing fetal brain development and abnormalities.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Athena Taymourtash
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Spitalgasse 23, Wien 1090, Austria
| | - Davood Karimi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Haykel Snoussi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Camilo Jaimes
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02215, USA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
17
|
Faghihpirayesh R, Karimi D, Erdoğmuş D, Gholipour A. Fetal-BET: Brain Extraction Tool for Fetal MRI. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:551-562. [PMID: 39157057 PMCID: PMC11329220 DOI: 10.1109/ojemb.2024.3426969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 07/07/2024] [Indexed: 08/20/2024] Open
Abstract
Goal: In this study, we address the critical challenge of fetal brain extraction from MRI sequences. Fetal MRI has played a crucial role in prenatal neurodevelopmental studies and in advancing our knowledge of fetal brain development in-utero. Fetal brain extraction is a necessary first step in most computational fetal brain MRI pipelines. However, it poses significant challenges due to 1) non-standard fetal head positioning, 2) fetal movements during examination, and 3) vastly heterogeneous appearance of the developing fetal brain and the neighboring fetal and maternal anatomy across gestation, and with various sequences and scanning conditions. Development of a machine learning method to effectively address this task requires a large and rich labeled dataset that has not been previously available. Currently, there is no method for accurate fetal brain extraction on various fetal MRI sequences. Methods: In this work, we first built a large annotated dataset of approximately 72,000 2D fetal brain MRI images. Our dataset covers the three common MRI sequences including T2-weighted, diffusion-weighted, and functional MRI acquired with different scanners. These data include images of normal and pathological brains. Using this dataset, we developed and validated deep learning methods, by exploiting the power of the U-Net style architectures, the attention mechanism, feature learning across multiple MRI modalities, and data augmentation for fast, accurate, and generalizable automatic fetal brain extraction. Results: Evaluations on independent test data, including data available from other centers, show that our method achieves accurate brain extraction on heterogeneous test data acquired with different scanners, on pathological brains, and at various gestational stages. Conclusions:By leveraging rich information from diverse multi-modality fetal MRI data, our proposed deep learning solution enables precise delineation of the fetal brain on various fetal MRI sequences. The robustness of our deep learning model underscores its potential utility for fetal brain imaging.
Collapse
Affiliation(s)
- Razieh Faghihpirayesh
- Electrical and Computer Engineering DepartmentNortheastern UniversityBostonMA02115USA
- Radiology DepartmentBoston Children's Hospital, and Harvard Medical SchoolBostonMA02115USA
| | - Davood Karimi
- Radiology DepartmentBoston Children's Hospital, and Harvard Medical SchoolBostonMA02115USA
| | - Deniz Erdoğmuş
- Electrical and Computer Engineering DepartmentNortheastern UniversityBostonMA02115USA
| | - Ali Gholipour
- Radiology DepartmentBoston Children's Hospital, and Harvard Medical SchoolBostonMA02115USA
| |
Collapse
|
18
|
Yang SX, Li YZ, Okutomi M. Instance-Wise MRI Reconstruction Based on Self-Supervised Implicit Neural Representation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40031522 DOI: 10.1109/embc53108.2024.10781752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Accelerated MRI involves a trade-off between sampling sufficiency and acquisition time. Supervised deep learning methods have shown great success in MRI reconstruction from under-sampled measurements, but they typically require a large set of fully-sampled MR images for training, which can be difficult to obtain. In this paper, we present a novel fully self-supervised method based on implicit neural representation, which requires only a single under-sampled MRI instance for training. To effectively guide the self-supervised learning process, we introduced multiple novel supervisory signals in both the image and frequency domains. Experimental results indicate that the proposed method outperforms existing self-supervised methods and even a supervised method, demonstrating its strong reliability and flexibility. Our code is publicly available at https://github.com/YSongxiao/SSLInstanceReconMRI.Clinical relevance- The proposed method can significantly enhance the image quality of under-sampled MR images without the need of ground-truth fully-sampled MR images for supervision and additional prior images for guidance.
Collapse
|
19
|
Zhang M, Feng R, Li Z, Feng J, Wu Q, Zhang Z, Ma C, Wu J, Yan F, Liu C, Zhang Y, Wei H. A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation. Med Image Anal 2024; 95:103173. [PMID: 38657424 DOI: 10.1016/j.media.2024.103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
Collapse
Affiliation(s)
- Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Wu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxin Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Cai Y, Hu W, Pei Y, Zhao H, Yu G. Encoding biological metaverse: Advancements and challenges in neural fields from macroscopic to microscopic. Innovation (N Y) 2024; 5:100627. [PMID: 38706956 PMCID: PMC11068916 DOI: 10.1016/j.xinn.2024.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Neural fields can efficiently encode three-dimensional (3D) scenes, providing a bridge between two-dimensional (2D) images and virtual reality. This method becomes a trendsetter in bringing the metaverse into vivo life. It has initially captured the attention of macroscopic biology, as demonstrated by computed tomography and magnetic resonance imaging, which provide a 3D field of view for diagnostic biological images. Meanwhile, it has also opened up new research opportunities in microscopic imaging, such as achieving clearer de novo protein structure reconstructions. Introducing this method to the field of biology is particularly significant, as it is refining the approach to studying biological images. However, many biologists have yet to fully appreciate the distinctive meaning of neural fields in transforming 2D images into 3D perspectives. This article discusses the application of neural fields in both microscopic and macroscopic biological images and their practical uses in biomedicine, highlighting the broad prospects of neural fields in the future biological metaverse. We stand at the threshold of an exciting new era, where the advancements in neural field technology herald the dawn of exploring the mysteries of life in innovative ways.
Collapse
Affiliation(s)
- Yantong Cai
- Dermatology Hospital, Southern Medical University, Guangzhou 266003, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenbo Hu
- Tencent AI Lab, Shenzhen 518071, China
| | - Yao Pei
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Hao Zhao
- Institute for AI Industry Research, Tsinghua University, Beijing 100000, China
| | - Guangchuang Yu
- Dermatology Hospital, Southern Medical University, Guangzhou 266003, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Lee J, Baek J. Iterative reconstruction for limited-angle CT using implicit neural representation. Phys Med Biol 2024; 69:105008. [PMID: 38593820 DOI: 10.1088/1361-6560/ad3c8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Objective.Limited-angle computed tomography (CT) presents a challenge due to its ill-posed nature. In such scenarios, analytical reconstruction methods often exhibit severe artifacts. To tackle this inverse problem, several supervised deep learning-based approaches have been proposed. However, they are constrained by limitations such as generalization issue and the difficulty of acquiring a large amount of paired CT images.Approach.In this work, we propose an iterative neural reconstruction framework designed for limited-angle CT. By leveraging a coordinate-based neural representation, we formulate tomographic reconstruction as a convex optimization problem involving a deep neural network. We then employ differentiable projection layer to optimize this network by minimizing the discrepancy between the predicted and measured projection data. In addition, we introduce a prior-based weight initialization method to ensure the network starts optimization with an informed initial guess. This strategic initialization significantly improves the quality of iterative reconstruction by stabilizing the divergent behavior in ill-posed neural fields. Our method operates in a self-supervised manner, thereby eliminating the need for extensive data.Main results.The proposed method outperforms other iterative and learning-based methods. Experimental results on XCAT and Mayo Clinic datasets demonstrate the effectiveness of our approach in restoring anatomical features as well as structures. This finding was substantiated by visual inspections and quantitative evaluations using NRMSE, PSNR, and SSIM. Moreover, we conduct a comprehensive investigation into the divergent behavior of iterative neural reconstruction, thus revealing its suboptimal convergence when starting from scratch. In contrast, our method consistently produced accurate images by incorporating an initial estimate as informed initialization.Significance.This work showcases the feasibility to reconstruct high-fidelity CT images from limited-angle x-ray projections. The proposed methodology introduces a novel data-free approach to enhance medical imaging, holding promise across various clinical applications.
Collapse
Affiliation(s)
- Jooho Lee
- Department of Artificial Intelligence, Yonsei University, Seoul, Republic of Korea
| | - Jongduk Baek
- Department of Artificial Intelligence, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Ciceri T, Casartelli L, Montano F, Conte S, Squarcina L, Bertoldo A, Agarwal N, Brambilla P, Peruzzo D. Fetal brain MRI atlases and datasets: A review. Neuroimage 2024; 292:120603. [PMID: 38588833 DOI: 10.1016/j.neuroimage.2024.120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
Fetal brain development is a complex process involving different stages of growth and organization which are crucial for the development of brain circuits and neural connections. Fetal atlases and labeled datasets are promising tools to investigate prenatal brain development. They support the identification of atypical brain patterns, providing insights into potential early signs of clinical conditions. In a nutshell, prenatal brain imaging and post-processing via modern tools are a cutting-edge field that will significantly contribute to the advancement of our understanding of fetal development. In this work, we first provide terminological clarification for specific terms (i.e., "brain template" and "brain atlas"), highlighting potentially misleading interpretations related to inconsistent use of terms in the literature. We discuss the major structures and neurodevelopmental milestones characterizing fetal brain ontogenesis. Our main contribution is the systematic review of 18 prenatal brain atlases and 3 datasets. We also tangentially focus on clinical, research, and ethical implications of prenatal neuroimaging.
Collapse
Affiliation(s)
- Tommaso Ciceri
- NeuroImaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy; Department of Information Engineering, University of Padua, Padua, Italy
| | - Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Florian Montano
- Diagnostic Imaging and Neuroradiology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Stefania Conte
- Psychology Department, State University of New York at Binghamton, New York, USA
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Denis Peruzzo
- NeuroImaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
23
|
Lamon S, de Dumast P, Sanchez T, Dunet V, Pomar L, Vial Y, Koob M, Bach Cuadra M. Assessment of fetal corpus callosum biometry by 3D super-resolution reconstructed T2-weighted magnetic resonance imaging. Front Neurol 2024; 15:1358741. [PMID: 38595845 PMCID: PMC11002102 DOI: 10.3389/fneur.2024.1358741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Objective To assess the accuracy of corpus callosum (CC) biometry, including sub-segments, using 3D super-resolution fetal brain MRI (SR) compared to 2D or 3D ultrasound (US) and clinical low-resolution T2-weighted MRI (T2WS). Method Fetal brain biometry was conducted by two observers on 57 subjects [21-35 weeks of gestational age (GA)], including 11 cases of partial CC agenesis. Measures were performed by a junior observer (obs1) on US, T2WS and SR and by a senior neuroradiologist (obs2) on T2WS and SR. CC biometric regression with GA was established. Statistical analysis assessed agreement within and between modalities and observers. Results This study shows robust SR to US concordance across gestation, surpassing T2WS. In obs1, SR aligns with US, except for genu and CC length (CCL), enhancing splenium visibility. In obs2, SR closely corresponds to US, differing in rostrum and CCL. The anterior CC (rostrum and genu) exhibits higher variability. SR's regression aligns better with literature (US) for CCL, splenium and body than T2WS. SR is the method with the least missing values. Conclusion SR yields CC biometry akin to US (excluding anterior CC). Thanks to superior 3D visualization and better through plane spatial resolution, SR allows to perform CC biometry more frequently than T2WS.
Collapse
Affiliation(s)
- Samuel Lamon
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Ultrasound and Fetal Medicine, Department Woman-Mother-Child, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Priscille de Dumast
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Thomas Sanchez
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Léo Pomar
- Ultrasound and Fetal Medicine, Department Woman-Mother-Child, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland
| | - Yvan Vial
- Ultrasound and Fetal Medicine, Department Woman-Mother-Child, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Mériam Koob
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| |
Collapse
|
24
|
Pei Y, Zhao F, Zhong T, Ma L, Liao L, Wu Z, Wang L, Zhang H, Wang L, Li G. PETS-Nets: Joint Pose Estimation and Tissue Segmentation of Fetal Brains Using Anatomy-Guided Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1006-1017. [PMID: 37874705 DOI: 10.1109/tmi.2023.3327295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Fetal Magnetic Resonance Imaging (MRI) is challenged by fetal movements and maternal breathing. Although fast MRI sequences allow artifact free acquisition of individual 2D slices, motion frequently occurs in the acquisition of spatially adjacent slices. Motion correction for each slice is thus critical for the reconstruction of 3D fetal brain MRI. In this paper, we propose a novel multi-task learning framework that adopts a coarse-to-fine strategy to jointly learn the pose estimation parameters for motion correction and tissue segmentation map of each slice in fetal MRI. Particularly, we design a regression-based segmentation loss as a deep supervision to learn anatomically more meaningful features for pose estimation and segmentation. In the coarse stage, a U-Net-like network learns the features shared for both tasks. In the refinement stage, to fully utilize the anatomical information, signed distance maps constructed from the coarse segmentation are introduced to guide the feature learning for both tasks. Finally, iterative incorporation of the signed distance maps further improves the performance of both regression and segmentation progressively. Experimental results of cross-validation across two different fetal datasets acquired with different scanners and imaging protocols demonstrate the effectiveness of the proposed method in reducing the pose estimation error and obtaining superior tissue segmentation results simultaneously, compared with state-of-the-art methods.
Collapse
|
25
|
Spieker V, Eichhorn H, Hammernik K, Rueckert D, Preibisch C, Karampinos DC, Schnabel JA. Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:846-859. [PMID: 37831582 DOI: 10.1109/tmi.2023.3323215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, any motion of the imaged object leads to complex artefacts in the reconstructed image in addition to other MR imaging artefacts. Deep learning has been frequently proposed for motion correction at several stages of the reconstruction process. The wide range of MR acquisition sequences, anatomies and pathologies of interest, and motion patterns (rigid vs. deformable and random vs. regular) makes a comprehensive solution unlikely. To facilitate the transfer of ideas between different applications, this review provides a detailed overview of proposed methods for learning-based motion correction in MRI together with their common challenges and potentials. This review identifies differences and synergies in underlying data usage, architectures, training and evaluation strategies. We critically discuss general trends and outline future directions, with the aim to enhance interaction between different application areas and research fields.
Collapse
|
26
|
Zhao L, Song S, Zhang C, Huang P, Zhang Y, Zhang M, Zheng R. Investigation of 3D Reconstruction Algorithms For Wireless Freehand Ultrasound Imaging System. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083639 DOI: 10.1109/embc40787.2023.10340015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The handheld 3D ultrasound imaging technique based on position tracking systems has been rapidly developed and widely applied in recent decades. The objectives of this study are to investigate the performance and accuracy of different 3D reconstruction algorithms including Voxel Nearest Neighbor (VNN), Pose Optimization Based (POB), and Implicit Representation (IR) methods. The high-precision phantom was used as the validation model to measure 2D/3D distance on the reconstructed image volume, and the measurements were evaluated with the true values obtained by caliber. The results indicated that the IR method presented the best reconstruction visualization and the smallest reconstruction errors for different motion cases. It demonstrated that the neural network-based reconstruction method can improve image quality and reduce reconstruction errors for the wireless freehand 3D ultrasound imaging systems.Clinical Relevance- This study validates the accuracy and precision of the different reconstruction algorithms for freehand 3D ultrasound imaging systems.
Collapse
|