1
|
Zhao F, Liu M, Xiang M, Li D, Jiang X, Jin X, Lin C, Wang R. Unsupervised and Self-supervised Learning in Low-Dose Computed Tomography Denoising: Insights from Training Strategies. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:902-930. [PMID: 39231886 PMCID: PMC11950483 DOI: 10.1007/s10278-024-01213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 09/06/2024]
Abstract
In recent years, X-ray low-dose computed tomography (LDCT) has garnered widespread attention due to its significant reduction in the risk of patient radiation exposure. However, LDCT images often contain a substantial amount of noises, adversely affecting diagnostic quality. To mitigate this, a plethora of LDCT denoising methods have been proposed. Among them, deep learning (DL) approaches have emerged as the most effective, due to their robust feature extraction capabilities. Yet, the prevalent use of supervised training paradigms is often impractical due to the challenges in acquiring low-dose and normal-dose CT pairs in clinical settings. Consequently, unsupervised and self-supervised deep learning methods have been introduced for LDCT denoising, showing considerable potential for clinical applications. These methods' efficacy hinges on training strategies. Notably, there appears to be no comprehensive reviews of these strategies. Our review aims to address this gap, offering insights and guidance for researchers and practitioners. Based on training strategies, we categorize the LDCT methods into six groups: (i) cycle consistency-based, (ii) score matching-based, (iii) statistical characteristics of noise-based, (iv) similarity-based, (v) LDCT synthesis model-based, and (vi) hybrid methods. For each category, we delve into the theoretical underpinnings, training strategies, strengths, and limitations. In addition, we also summarize the open source codes of the reviewed methods. Finally, the review concludes with a discussion on open issues and future research directions.
Collapse
Affiliation(s)
- Feixiang Zhao
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Ouhai District, Wenzhou, 325000, Zhejiang, China
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, 1 East Third Road, Chengdu, 610059, Sichuan, China
| | - Mingzhe Liu
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Ouhai District, Wenzhou, 325000, Zhejiang, China
- College of Computer Science and Cyber Security, Chengdu University of Technology, 1 East Third Road, Chengdu, 610059, Sichuan, China
| | - Mingrong Xiang
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Ouhai District, Wenzhou, 325000, Zhejiang, China.
- School of Information Technology, Deakin University, Melbourne Burwood Campus, 221 Burwood Hwy, Melbourne, 3125, Victoria, Australia.
| | - Dongfen Li
- College of Computer Science and Cyber Security, Chengdu University of Technology, 1 East Third Road, Chengdu, 610059, Sichuan, China
| | - Xin Jiang
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Xiance Jin
- Department of Radiotherapy Center, The first Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Cai Lin
- Department of Burn, Wound Repair and Regenerative Medicine Center, The first Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Ruili Wang
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Ouhai District, Wenzhou, 325000, Zhejiang, China
- School of Mathematical and Computational Science, Massey University, SH17, Albany, 0632, Auckland, New Zealand
| |
Collapse
|
2
|
Song Z, Xue L, Xu J, Zhang B, Jin C, Yang J, Zou C. Real-World Low-Dose CT Image Denoising by Patch Similarity Purification. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; PP:196-208. [PMID: 40030715 DOI: 10.1109/tip.2024.3515878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Reducing the radiation dose in CT scanning is important to alleviate the damage to the human health in clinical scenes. A promising way is to replace the normal-dose CT (NDCT) imaging by low-dose CT (LDCT) imaging with lower tube voltage and tube current. This often brings severe noise to the LDCT images, which adversely affects the diagnosis accuracy. Most of existing LDCT image denoising networks are trained either with synthetic LDCT images or real-world LDCT and NDCT image pairs with huge spatial misalignment. However, the synthetic noise is very different from the complex noise in real-world LDCT images, while the huge spatial misalignment brings inaccurate predictions of tissue structures in the denoised LDCT images. To well utilize real-world LDCT and NDCT image pairs for LDCT image denoising, in this paper, we introduce a new Patch Similarity Purification (PSP) strategy to construct high-quality training dataset for network training. Specifically, our PSP strategy first perform binarization for each pair of image patches cropped from the corresponding LDCT and NDCT image pairs. For each pair of binary masks, it then computes their similarity ratio by common mask calculation, and the patch pair can be selected as a training sample if their mask similarity ratio is higher than a threshold. By using our PSP strategy, each training set of our Rabbit and Patient datasets contain hundreds of thousands of real-world LDCT and NDCT image patch pairs with negligible misalignment. Extensive experiments demonstrate the usefulness of our PSP strategy on purifying the training data and the effectiveness of training LDCT image denoising networks on our datasets. The code and dataset are provided at https://github.com/TuTusong/PSP.
Collapse
|
3
|
Yao L, Wang J, Wu Z, Du Q, Yang X, Li M, Zheng J. Parallel processing model for low-dose computed tomography image denoising. Vis Comput Ind Biomed Art 2024; 7:14. [PMID: 38865022 PMCID: PMC11169366 DOI: 10.1186/s42492-024-00165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Low-dose computed tomography (LDCT) has gained increasing attention owing to its crucial role in reducing radiation exposure in patients. However, LDCT-reconstructed images often suffer from significant noise and artifacts, negatively impacting the radiologists' ability to accurately diagnose. To address this issue, many studies have focused on denoising LDCT images using deep learning (DL) methods. However, these DL-based denoising methods have been hindered by the highly variable feature distribution of LDCT data from different imaging sources, which adversely affects the performance of current denoising models. In this study, we propose a parallel processing model, the multi-encoder deep feature transformation network (MDFTN), which is designed to enhance the performance of LDCT imaging for multisource data. Unlike traditional network structures, which rely on continual learning to process multitask data, the approach can simultaneously handle LDCT images within a unified framework from various imaging sources. The proposed MDFTN consists of multiple encoders and decoders along with a deep feature transformation module (DFTM). During forward propagation in network training, each encoder extracts diverse features from its respective data source in parallel and the DFTM compresses these features into a shared feature space. Subsequently, each decoder performs an inverse operation for multisource loss estimation. Through collaborative training, the proposed MDFTN leverages the complementary advantages of multisource data distribution to enhance its adaptability and generalization. Numerous experiments were conducted on two public datasets and one local dataset, which demonstrated that the proposed network model can simultaneously process multisource data while effectively suppressing noise and preserving fine structures. The source code is available at https://github.com/123456789ey/MDFTN .
Collapse
Affiliation(s)
- Libing Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jiping Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Qiang Du
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ming Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| |
Collapse
|
4
|
Meng M, Wang Y, Zhu M, Tao X, Mao Z, Liao J, Bian Z, Zeng D, Ma J. DDT-Net: Dose-Agnostic Dual-Task Transfer Network for Simultaneous Low-Dose CT Denoising and Simulation. IEEE J Biomed Health Inform 2024; 28:3613-3625. [PMID: 38478459 DOI: 10.1109/jbhi.2024.3376628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Deep learning (DL) algorithms have achieved unprecedented success in low-dose CT (LDCT) imaging and are expected to be a new generation of CT reconstruction technology. However, most DL-based denoising models often lack the ability to generalize to unseen dose data. Moreover, most simulation tools for LDCT typically operate on proprietary projection data, which is generally not accessible without an established collaboration with CT manufacturers. To alleviate these issues, in this work, we propose a dose-agnostic dual-task transfer network, termed DDT-Net, for simultaneous LDCT denoising and simulation. Concretely, the dual-task learning module is constructed to integrate the LDCT denoising and simulation tasks into a unified optimization framework by learning the joint distribution of LDCT and NDCT data. We approximate the joint distribution of continuous dose level data by training DDT-Net with discrete dose data, which can be generalized to denoising and simulation of unseen dose data. In particular, the mixed-dose training strategy adopted by DDT-Net can promote the denoising performance of lower-dose data. The paired dataset simulated by DDT-Net can be used for data augmentation to further restore the tissue texture of LDCT images. Experimental results on synthetic data and clinical data show that the proposed DDT-Net outperforms competing methods in terms of denoising and generalization performance at unseen dose data, and it also provides a simulation tool that can quickly simulate realistic LDCT images at arbitrary dose levels.
Collapse
|
5
|
Shao L, Chen B, Zhang Z, Zhang Z, Chen X. Artificial intelligence generated content (AIGC) in medicine: A narrative review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:1672-1711. [PMID: 38303483 DOI: 10.3934/mbe.2024073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Recently, artificial intelligence generated content (AIGC) has been receiving increased attention and is growing exponentially. AIGC is generated based on the intentional information extracted from human-provided instructions by generative artificial intelligence (AI) models. AIGC quickly and automatically generates large amounts of high-quality content. Currently, there is a shortage of medical resources and complex medical procedures in medicine. Due to its characteristics, AIGC can help alleviate these problems. As a result, the application of AIGC in medicine has gained increased attention in recent years. Therefore, this paper provides a comprehensive review on the recent state of studies involving AIGC in medicine. First, we present an overview of AIGC. Furthermore, based on recent studies, the application of AIGC in medicine is reviewed from two aspects: medical image processing and medical text generation. The basic generative AI models, tasks, target organs, datasets and contribution of studies are considered and summarized. Finally, we also discuss the limitations and challenges faced by AIGC and propose possible solutions with relevant studies. We hope this review can help readers understand the potential of AIGC in medicine and obtain some innovative ideas in this field.
Collapse
Affiliation(s)
- Liangjing Shao
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, Shanghai 200032, China
| | - Benshuang Chen
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, Shanghai 200032, China
| | - Ziqun Zhang
- Information office, Fudan University, Shanghai 200032, China
| | - Zhen Zhang
- Baoshan Branch of Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200444, China
| | - Xinrong Chen
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Cui W, Lv H, Wang J, Zheng Y, Wu Z, Zhao H, Zheng J, Li M. Feature shared multi-decoder network using complementary learning for Photon counting CT ring artifact suppression. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:529-547. [PMID: 38669511 DOI: 10.3233/xst-230396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND Photon-counting computed tomography (Photon counting CT) utilizes photon-counting detectors to precisely count incident photons and measure their energy. These detectors, compared to traditional energy integration detectors, provide better image contrast and material differentiation. However, Photon counting CT tends to show more noticeable ring artifacts due to limited photon counts and detector response variations, unlike conventional spiral CT. OBJECTIVE To comprehensively address this issue, we propose a novel feature shared multi-decoder network (FSMDN) that utilizes complementary learning to suppress ring artifacts in Photon counting CT images. METHODS Specifically, we employ a feature-sharing encoder to extract context and ring artifact features, facilitating effective feature sharing. These shared features are also independently processed by separate decoders dedicated to the context and ring artifact channels, working in parallel. Through complementary learning, this approach achieves superior performance in terms of artifact suppression while preserving tissue details. RESULTS We conducted numerous experiments on Photon counting CT images with three-intensity ring artifacts. Both qualitative and quantitative results demonstrate that our network model performs exceptionally well in correcting ring artifacts at different levels while exhibiting superior stability and robustness compared to the comparison methods. CONCLUSIONS In this paper, we have introduced a novel deep learning network designed to mitigate ring artifacts in Photon counting CT images. The results illustrate the viability and efficacy of our proposed network model as a new deep learning-based method for suppressing ring artifacts.
Collapse
Affiliation(s)
- Wei Cui
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Haipeng Lv
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jiping Wang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Zhao
- Wenzhou People's Hospital, Wenzhou, China
| | - Jian Zheng
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Li
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Muksimova S, Umirzakova S, Mardieva S, Cho YI. Enhancing Medical Image Denoising with Innovative Teacher-Student Model-Based Approaches for Precision Diagnostics. SENSORS (BASEL, SWITZERLAND) 2023; 23:9502. [PMID: 38067873 PMCID: PMC10708859 DOI: 10.3390/s23239502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
The realm of medical imaging is a critical frontier in precision diagnostics, where the clarity of the image is paramount. Despite advancements in imaging technology, noise remains a pervasive challenge that can obscure crucial details and impede accurate diagnoses. Addressing this, we introduce a novel teacher-student network model that leverages the potency of our bespoke NoiseContextNet Block to discern and mitigate noise with unprecedented precision. This innovation is coupled with an iterative pruning technique aimed at refining the model for heightened computational efficiency without compromising the fidelity of denoising. We substantiate the superiority and effectiveness of our approach through a comprehensive suite of experiments, showcasing significant qualitative enhancements across a multitude of medical imaging modalities. The visual results from a vast array of tests firmly establish our method's dominance in producing clearer, more reliable images for diagnostic purposes, thereby setting a new benchmark in medical image denoising.
Collapse
Affiliation(s)
| | - Sabina Umirzakova
- Department of IT Convergence Engineering, Gachon University, Sujeong-gu, Seongnam-si 461-701, Republic of Korea; (S.M.); (S.M.)
| | | | - Young-Im Cho
- Department of IT Convergence Engineering, Gachon University, Sujeong-gu, Seongnam-si 461-701, Republic of Korea; (S.M.); (S.M.)
| |
Collapse
|