1
|
He H, Gao Z, Hu Z, Liang G, Huang Y, Zhou M, Liang R, Zhang K. Identification and Characterization of Extrachromosomal Circular DNA in Slimming Grass Carp. Biomolecules 2024; 14:1045. [PMID: 39334812 PMCID: PMC11430282 DOI: 10.3390/biom14091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Slimming grass carp is a commercial variety with good body form and meat quality, which is cultured by starving common grass carp in a clean flowing water environment. Compared to common grass carp, slimming grass carp has a far higher economic value. Until now, no molecular study has concentrated on the regulation mechanism of the muscle characteristics of slimming grass carp. This study first reported the gene expression profile of the muscle characteristics of slimming grass carp based on the level of extrachromosomal circular DNAs (eccDNAs). EccDNAs are double-stranded circular DNAs derived from genomic DNAs and play crucial roles in the functional regulation of a wide range of biological processes, none of which have been shown to occur in fish. Here, muscle eccDNAs from slimming grass carp and common grass carp were both generally sequenced, and the information, as well as the expression profile of eccDNAs, were compared and analysed. The findings reveal that 82,238 and 25,857 eccDNAs were detected from slimming grass carp and common grass carp, respectively. The length distribution of eccDNAs was in the range of 1~1000 bp, with two peaks at about 200 bp and 400 bp. When the expression profiles of eccDNAs between slimming grass carp and common grass carp were compared, 3523 up-regulated and 175 down-regulated eccDNAs were found. Enrichment analysis showed that these eccDNA genes were correlated with cellular structure and response, cell immunology, enzyme activity, etc. Certain differentially expressed eccDNAs involved in muscle characteristics were detected, which include myosin heavy chain, myosin light chain, muscle segment homeobox C, calsequestrin, calmodulin, etc., among which the majority of genes were linked to muscle structure and contraction. This indicates that during the process of cultivating from common grass carp to slimming grass carp, the treatment primarily affected muscle structure and contraction, making the meat quality of slimming grass carp different from that of common grass carp. This result provides molecular evidence and new insights by which to elucidate the regulating mechanism of muscle phenotypic characterisation in slimming grass carp and other fish.
Collapse
Affiliation(s)
- Haobin He
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zihan Gao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zehua Hu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guanyu Liang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Rishen Liang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Kai Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Kelly MM, Sharma K, Wright CS, Yi X, Reyes Fernandez PC, Gegg AT, Gorrell TA, Noonan ML, Baghdady A, Sieger JA, Dolphin AC, Warden SJ, Deosthale P, Plotkin LI, Sankar U, Hum JM, Robling AG, Farach-Carson MC, Thompson WR. Loss of the auxiliary α 2δ 1 voltage-sensitive calcium channel subunit impairs bone formation and anabolic responses to mechanical loading. JBMR Plus 2024; 8:ziad008. [PMID: 38505532 PMCID: PMC10945727 DOI: 10.1093/jbmrpl/ziad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024] Open
Abstract
Voltage-sensitive calcium channels (VSCCs) influence bone structure and function, including anabolic responses to mechanical loading. While the pore-forming (α1) subunit of VSCCs allows Ca2+ influx, auxiliary subunits regulate the biophysical properties of the pore. The α2δ1 subunit influences gating kinetics of the α1 pore and enables mechanically induced signaling in osteocytes; however, the skeletal function of α2δ1 in vivo remains unknown. In this work, we examined the skeletal consequences of deleting Cacna2d1, the gene encoding α2δ1. Dual-energy X-ray absorptiometry and microcomputed tomography imaging demonstrated that deletion of α2δ1 diminished bone mineral content and density in both male and female C57BL/6 mice. Structural differences manifested in both trabecular and cortical bone for males, while the absence of α2δ1 affected only cortical bone in female mice. Deletion of α2δ1 impaired skeletal mechanical properties in both sexes, as measured by three-point bending to failure. While no changes in osteoblast number or activity were found for either sex, male mice displayed a significant increase in osteoclast number, accompanied by increased eroded bone surface and upregulation of genes that regulate osteoclast differentiation. Deletion of α2δ1 also rendered the skeleton insensitive to exogenous mechanical loading in males. While previous work demonstrates that VSCCs are essential for anabolic responses to mechanical loading, the mechanism by which these channels sense and respond to force remained unclear. Our data demonstrate that the α2δ1 auxiliary VSCC subunit functions to maintain baseline bone mass and strength through regulation of osteoclast activity and also provides skeletal mechanotransduction in male mice. These data reveal a molecular player in our understanding of the mechanisms by which VSCCs influence skeletal adaptation.
Collapse
Affiliation(s)
- Madison M Kelly
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
| | - Karan Sharma
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
| | - Christian S Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
| | - Xin Yi
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
| | - Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
| | - Aaron T Gegg
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
| | - Taylor A Gorrell
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
| | - Megan L Noonan
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, United States
| | - Ahmed Baghdady
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
| | - Jacob A Sieger
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College of London, Gower Street, London WC1E 6BT, United Kingdom
| | - Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne Victoria 3086, DX 211319, Australia
| | - Padmini Deosthale
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| | - Uma Sankar
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| | - Julia M Hum
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, United States
| | - William R Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, United States
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, United States
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, IN 46202, United States
| |
Collapse
|
3
|
Zhai R, Wang Q. Phylogenetic Analysis Provides Insight Into the Molecular Evolution of Nociception and Pain-Related Proteins. Evol Bioinform Online 2023; 19:11769343231216914. [PMID: 38107163 PMCID: PMC10725132 DOI: 10.1177/11769343231216914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Nociception and pain sensation are important neural processes in humans to avoid injury. Many proteins are involved in nociception and pain sensation in humans; however, the evolution of these proteins in animals is unknown. Here, we chose nociception- and pain-related proteins, including G protein-coupled receptors (GPCRs), ion channels (ICs), and neuropeptides (NPs), which are reportedly associated with nociception and pain in humans, and identified their homologs in various animals by BLAST, phylogenetic analysis and protein architecture comparison to reveal their evolution from protozoans to humans. We found that the homologs of transient receptor potential channel A 1 (TRPA1), TRAPM, acid-sensing IC (ASIC), and voltage-dependent calcium channel (VDCC) first appear in Porifera. Substance-P receptor 1 (TACR1) emerged from Coelenterata. Somatostatin receptor type 2 (SSTR2), TRPV1 and voltage-dependent sodium channels (VDSC) appear in Platyhelminthes. Calcitonin gene-related peptide receptor (CGRPR) was first identified in Nematoda. However, opioid receptors (OPRs) and most NPs were discovered only in vertebrates and exist from agnatha to humans. The results demonstrated that homologs of nociception and pain-related ICs exist from lower animal phyla to high animal phyla, and that most of the GPCRs originate from low to high phyla sequentially, whereas OPRs and NPs are newly evolved in vertebrates, which provides hints of the evolution of nociception and pain-related proteins in animals and humans.
Collapse
Affiliation(s)
- Rujun Zhai
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Qian Wang
- Changping Laboratory, Beijing, P. R. China
| |
Collapse
|
4
|
Guan W, Li SX, Reed MA. Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications. NANOTECHNOLOGY 2014; 25:122001. [PMID: 24570414 DOI: 10.1088/0957-4484/25/12/122001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanochannels remain at the focus of growing scientific and technological interest. The nanometer scale of the structure allows the discovery of a new range of phenomena that has not been possible in traditional microchannels, among which a direct field effect control over the charges in nanochannels is very attractive for various applications, since it offers a unique opportunity to integrate wet ionics with dry electronics seamlessly. This review will focus on the voltage gated ionic and molecular transport in engineered gated nanochannels. We will present an overview of the transport theory. Fabrication techniques regarding the gated nanostructures will also be discussed. In addition, various applications using the voltage gated nanochannels are outlined, which involves biological and chemical analysis, and energy conversion.
Collapse
Affiliation(s)
- Weihua Guan
- Department of Electrical Engineering, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
5
|
Milescu M, Lee HC, Bae CH, Kim JI, Swartz KJ. Opening the shaker K+ channel with hanatoxin. ACTA ACUST UNITED AC 2013; 141:203-16. [PMID: 23359283 PMCID: PMC3557313 DOI: 10.1085/jgp.201210914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1–S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1–S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance–voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin–channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance–voltage relationship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition. Chimeras in which S3b–S4 paddle motifs are transferred between Kv2.1 and Shaker Kv channels, as well as experiments with the related tarantula toxin GxTx-1E, lead us to conclude that the actions of tarantula toxins are not simply a product of where they bind to the channel, but that fine structural details of the toxin–channel interface determine whether a toxin is an inhibitor or opener.
Collapse
Affiliation(s)
- Mirela Milescu
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
6
|
Vink S, Alewood PF. Targeting voltage-gated calcium channels: developments in peptide and small-molecule inhibitors for the treatment of neuropathic pain. Br J Pharmacol 2013; 167:970-89. [PMID: 22725651 DOI: 10.1111/j.1476-5381.2012.02082.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic pain affects approximately 20% of people worldwide and places a large economic and social burden on society. Despite the availability of a range of analgesics, this condition is inadequately treated, with complete alleviation of symptoms rarely occurring. In the past 30 years, the voltage-gated calcium channels (VGCCs) have been recognized as potential targets for analgesic development. Although the majority of the research has been focused on Ca(v) 2.2 in particular, other VGCC subtypes such as Ca(v) 3.2 have recently come to the forefront of analgesic research. Venom peptides from marine cone snails have been proven to be a valuable tool in neuroscience, playing a major role in the identification and characterization of VGCC subtypes and producing the first conotoxin-based drug on the market, the ω-conotoxin, ziconotide. This peptide potently and selectively inhibits Ca(v) 2.2, resulting in analgesia in chronic pain states. However, this drug is only available via intrathecal administration, and adverse effects and a narrow therapeutic window have limited its use in the clinic. Other Ca(v) 2.2 inhibitors are currently in development and offer the promise of an improved route of administration and safety profile. This review assesses the potential of targeting VGCCs for analgesic development, with a main focus on conotoxins that block Ca(v) 2.2 and the developments made to transform them into therapeutics.
Collapse
Affiliation(s)
- S Vink
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
7
|
Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion. Hear Res 2011; 278:52-68. [PMID: 21281707 DOI: 10.1016/j.heares.2011.01.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 01/10/2023]
Abstract
As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K(+) channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC α-subunits expressed in the ganglion, investigated aspects of Ca(2+)-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC α-subunits in the spiral ganglion in vitro. Initial experiments with qRT-PCR showed that eight of the ten known VGCC α-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca(2+) channels. Moreover, we were able to study seven of the α-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, three of which were neuron-specific (Ca(V)1.3, Ca(V)2.2, and Ca(V)3.3). Further characterization of neuron-specific α-subunits showed that Ca(V)1.3 and Ca(V)3.3 were tonotopically-distributed, whereas Ca(V)2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC α-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact (Ca(V)2.3, Ca(V)3.1) from loose (Ca(V)1.2) myelin. Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca(2+) plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under these conditions, we hypothesize that differential density and/or kinetics of one or more of the VGCC α-subunits could account for observed tonotopic differences. These experiments have set the stage for defining the clear multiplicity of functional control in neurons and Schwann cells of the spiral ganglion.
Collapse
|
8
|
Wang L, Pi C, Liu J, Chen S, Peng C, Sun D, Zhou M, Xiang H, Ren Z, Xu A. Identification and characterization of a novel O-superfamily conotoxin from Conus litteratus. J Pept Sci 2008; 14:1077-83. [PMID: 18523965 DOI: 10.1002/psc.1044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel conotoxin named lt6c, an O-superfamily conotoxin, was identified from the cDNA library of venom duct of Conus litteratus. The full-length cDNA contains an open reading frame encoding a predicted 22-residue signal peptide, a 22-residue proregion and a mature peptide of 28 amino acids. The signal peptide sequence of lt6c is highly conserved in O-superfamily conotoxins and the mature peptide consists of six cysteines arranged in the pattern of C-C-CC-C-C that is defined the O-superfamily of conotoxins. The mature peptide fused with thioredoxin, 6-His tag, and a Factor Xa cleavage site was successfully expressed in Escherichia coli. About 12 mg lt6c was purified from 1L culture. Under whole-cell patch-clamp mode, lt6c inhibited sodium currents on adult rat dorsal root ganglion neurons. Therefore, lt6c is a novel O-superfamily conotoxin that is able to block sodium channels.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu J, Wu Q, Pi C, Zhao Y, Zhou M, Wang L, Chen S, Xu A. Isolation and characterization of a T-superfamily conotoxin from Conus litteratus with targeting tetrodotoxin-sensitive sodium channels. Peptides 2007; 28:2313-9. [PMID: 17961831 DOI: 10.1016/j.peptides.2007.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 09/07/2007] [Accepted: 09/14/2007] [Indexed: 11/16/2022]
Abstract
A T-1-conotoxin, lt5d, was purified and characterized from the venom of vermivorous hunting cone snails Conus litteratus. The complete amino acid sequence of lt5d (DCCPAKLLCCNP) has been determined by Edman degradation. With two disulfide bonds, the calculated average mass is 1274.57 Da, which is confirmed by MALDI-TOF mass spectrometry (average mass 1274.8778). Under whole cell patch-clamp mode, lt5d inhibits tetrodotoxin-sensitive sodium currents on adult rat dorsal root ganglion neurons, but has no effects on tetrodotoxin-resistant sodium currents. The inhibition of TTX-sensitive sodium currents by lt5d was found to be concentration-dependent with the IC(50) value of 156.16 nM. Thus, this is the first T-superfamily conotoxin identified to block TTX-sensitive sodium channels.
Collapse
Affiliation(s)
- Junliang Liu
- State Key Laboratory of Biocontrol, The Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Thomas M, Jayatilaka D, Corry B. The predominant role of coordination number in potassium channel selectivity. Biophys J 2007; 93:2635-43. [PMID: 17573427 PMCID: PMC1989715 DOI: 10.1529/biophysj.107.108167] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potassium channels are exquisitely selective, allowing K+ to pass across cell membranes while blocking other ion types. Here we demonstrate that the number of carbonyl oxygen atoms that surround permeating ions is the most important factor in determining ion selectivity rather than the size of the pore or the strength of the coordinating dipoles. Although the electrostatic properties of the coordinating ligands can lead to Na+ or K+ selectivity at some values of the dipole moment, no significant selectivity arises at the specific value of the dipole moment for carbonyl groups found in potassium channels when the ligands have complete freedom. Rather, we show that the main contribution to selectivity arises from slight constraints on the conformational freedom of the channel protein that limit the number of carbonyl oxygen atoms to a value better suited to K+ than Na+, despite the pore being flexible. This mechanism provides an example of a general framework for explaining ion discrimination in a range of natural and synthetic macromolecules in which selectivity is controlled by the number of coordinating ligands in addition to their dipole moment.
Collapse
Affiliation(s)
- Michael Thomas
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley WA 6009, Australia
| | | | | |
Collapse
|
11
|
Abstract
Neurons transmit information through electrical signals generated by voltage-gated ion channels. These channels consist of a large superfamily of proteins that form channels selective for potassium, sodium, or calcium ions. In this review we focus on the molecular mechanisms by which these channels convert changes in membrane voltage into the opening and closing of "gates" that turn ion conductance on and off. An explosion of new studies in the last year, including the first X-ray crystal structure of a mammalian voltage-gated potassium channel, has led to radically different interpretations of the structure and molecular motion of the voltage sensor. The interpretations are as distinct as the techniques employed for the studies: crystallography, fluorescence, accessibility analysis, and electrophysiology. We discuss the likely causes of the discrepant results in an attempt to identify the missing information that will help resolve the controversy and reveal the mechanism by which a voltage sensor controls the channel's gates.
Collapse
Affiliation(s)
- Francesco Tombola
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
12
|
Abstract
The ubiquitin-proteasome system (UPS) is the major nonlysosomal pathway for intracellular protein degradation, generally requiring a covalent linkage of one or more chains of polyubiquitins to the protein intended for degradation. It has become clear that the UPS plays major roles in regulating many cellular processes, including the cell cycle, immune responses, apoptosis, cell signaling, and protein turnover under normal and pathological conditions, as well as in protein quality control by removal of damaged, oxidized, and/or misfolded proteins. This review will present an overview of the structure, biochemistry, and physiology of the UPS with emphasis on its role in the heart, if known. In addition, evidence will be presented supporting the role of certain muscle-specific ubiquitin protein ligases, key regulatory components of the UPS, in regulation of sarcomere protein turnover and cardiomyocyte size and how this might play a role in induction of the hypertrophic phenotype. Moreover, this review will present the evidence suggesting that proteasomal dysfunction may play a role in cardiac pathologies such as myocardial ischemia, congestive heart failure, and myofilament-related and idiopathic-dilated cardiomyopathies, as well as cardiomyocyte loss in the aging heart. Finally, certain pitfalls of proteasome studies will be described with the intent of providing investigators with enough information to avoid these problems. This review should provide current investigators in the field with an up-to-date analysis of the literature and at the same time provide an impetus for new investigators to enter this important and rapidly changing area of research.
Collapse
Affiliation(s)
- Saul R Powell
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
French RJ, Zamponi GW. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. IEEE Trans Nanobioscience 2005; 4:58-69. [PMID: 15816172 DOI: 10.1109/tnb.2004.842500] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated ion channels are membrane proteins which underlie rapid electrical signals among neurons and the spread of excitation in skeletal muscle and heart. We outline some recent advances in the study of voltage-sensitive sodium and calcium channels. Investigations are providing insight into the changes in molecular conformation associated with open-closed gating of the channels, the mechanisms by which they allow only specific ion species to pass through and carry an electric current, and the pathological consequences of small perturbations in channel structure which result from genetic mutations. Determination of three-dimensional structures, coupled with molecular manipulations by site-directed mutagenesis, and parallel electrophysiological analyses of currents through the ion channels, are providing an understanding of the roles and function of these channels at an unprecedented level of molecular detail. Crucial to these advances are studies of bacterial homologues of ion channels from man and other eukaryotes, and the use of naturally occurring peptide toxins which target different ion channel types with exquisite specificity.
Collapse
Affiliation(s)
- Robert J French
- Department of Physiology and Biophysics, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|