1
|
Ahn GR, Park HJ, Kim YJ, Song MG, Han HS, Lee WG, Hong HK, Yoo KH, Seok J, Lee KB, Kim BJ. Subcytotoxic transepidermal delivery using low intensity cold atmospheric plasma. Sci Rep 2025; 15:2129. [PMID: 39820037 PMCID: PMC11739377 DOI: 10.1038/s41598-024-83201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage. However, the ability of LICAP to enhance transepidermal delivery in sub-cytotoxic conditions has not been fully investigated. This study aims to determine the sub-cytotoxic range of exposure time for LICAP and, within the range, to investigate the effects of LICAP treatment on transepidermal drug delivery (TED) and mechanisms using human keratinocytes and a mouse model. For the in vitro studies, LICAP treatment was evaluated in human keratinocyte (HaCaT) cells by assessing reactive species production, DNA damage, and cytotoxicity profiles. Within the determined safety range, mechanistic analyses were conducted to examine LICAP-enhanced delivery pathways. mRNA expression and protein levels of tight and adherens junction genes were quantified, and changes in ultramicroscopic morphology of HaCaT monolayers were investigated. Intracellular delivery of fluorescein isothiocyanate (FITC)-dextran was also assessed. For the in vivo studies, E-cadherin expression and the transepidermal delivery (TED) of human epidermal growth factor (hEGF) were analyzed in LICAP-treated mouse dorsal skin. The upper safety range of LICAP exposure time, reducing cell viability by 70% (IC70 or LD30), was estimated at 34.3 s. Within the safety range, LICAP treatment downregulated multiple tight and adherens junction genes in HaCaT cells. Consistent with the in vitro results, the epidermal E-cadherin expression was reduced, and human epidermal growth factor (hEGF) was infiltrated in the dermis of the LICAP-treated mouse skin. Intercellular clefts were detected in the HaCaT cell monolayer immediately following LICAP treatment and intracellular delivery of FITC-dextran was confirmed after LICAP exposure. This study demonstrated that LICAP treatment enhances transepidermal permeation of hEGF, apparently via both paracellular and transcellular routes. Under our study conditions, LICAP treatment seems to be a novel approach to facilitate TED with low safety concerns in vitro. Further translational studies are needed for clinical evaluation.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyung-Joon Park
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Yu Jin Kim
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Min Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hye Sung Han
- College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Woo Geon Lee
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyuck Ki Hong
- Human IT Convergence System R&D Division, Korea Electronics Technology Institute, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang Ho Yoo
- College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
- College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Kyu Back Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea.
- BK21 Four R&E Center for Precision Public Health, Korea University, Seoul, Republic of Korea.
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
- College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
2
|
Skinner MA, Otten A, Hoff A, Jaroszeski M. Combined effect of heat and corona charge on molecular delivery to a T cell line in vitro. PLoS One 2023; 18:e0293035. [PMID: 37851653 PMCID: PMC10584139 DOI: 10.1371/journal.pone.0293035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
With the rapid increase of gene and immunotherapies for treating cancer, there is a need to efficiently transfect cells. Previous studies suggest that electrotransfer can provide a non-viral method for gene delivery. Electrotransfer traditionally relies upon the application of direct current pulses to the cells of interest. Corona charge was investigated in this study as an alternative to traditional methods as a means of creating the electric field necessary to deliver materials via electrotransfer. The goal was to determine if there was an increase in molecular delivery across the membrane of a human T cell line used as a model system. In a novel dish created for the study, the effects of elevated temperatures (37, 40, 43, and 45°C) during the treatment process were also examined in combination with corona charge application. Results showed that treating cells with corona charge at room temperature (~23°C) caused a statistically significant increase in molecular delivery while maintaining viability. Heat alone did not cause a statistically significant effect on molecular delivery. Combined corona charge treatment and heating resulted in a statistically significant increase on molecular delivery compared to controls that were only heated. Combined corona charge treatment and heating to all temperatures when compared to controls treated at room temperature, showed a statistically significant increase in molecular delivery.
Collapse
Affiliation(s)
- Molly A. Skinner
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, United States of America
| | - Alex Otten
- Department of Electrical Engineering, University of South Florida, Tampa, FL, United States of America
| | - Andrew Hoff
- Department of Electrical Engineering, University of South Florida, Tampa, FL, United States of America
| | - Mark Jaroszeski
- Department of Medical Engineering University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
3
|
Dolezalova E, Malik MA, Heller L, Heller R. Delivery and expression of plasmid DNA into cells by a novel non-thermal plasma source. Bioelectrochemistry 2021; 140:107816. [PMID: 33894566 DOI: 10.1016/j.bioelechem.2021.107816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/09/2023]
Abstract
Medical applications such as plasma assisted gene transfer is a minimally invasive approach that can substantially reduce potential discomfort of treated area. Atmospheric pressure plasma discharge is an effective approach to deliver plasmid DNA for in vitro and in vivo applications. We investigated plasma assisted delivery in vitro in mouse melanoma cells (B16F10) using a novel surface plasma device, which is operated in air. We evaluated the influence of applied voltage and distance between the surface device and cell monolayer. We found no significant effect on the viability of cells. Highest expression following delivery of a plasmid encoding green fluorescent protein was achieved with an applied voltage of 11.25 kV at a 2 mm distance and 5 s exposure time. To better understand the influence of oxidative damages and stress on cells after plasma delivery, a mRNA expression study was performed. Our results indicated that TNFα mRNA was significantly upregulated. The mRNA response may be attributed to the RONS generated by plasma; however, this mRNA upregulation was not adequate to be reflected in a coordinate protein upregulation. From the results reported here, it is clear that this novel plasma device could be used for plasmid delivery.
Collapse
Affiliation(s)
- Eva Dolezalova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Muhammad A Malik
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, USA
| | - Loree Heller
- Department of Medical Engineering, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Richard Heller
- Department of Medical Engineering, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
4
|
Kido Y, Motomura H, Ikeda Y, Satoh S, Jinno M. Clarification of electrical current importance in plasma gene transfection by equivalent circuit analysis. PLoS One 2021; 16:e0245654. [PMID: 33508006 PMCID: PMC7842892 DOI: 10.1371/journal.pone.0245654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
We have been developing a method of plasma gene transfection that uses microdischarge plasma (MDP) and is highly efficient, minimally invasive, and safe. Using this technique, electrical factors (such as the electrical current and electric field created through processing discharge plasma) and the chemical factors of active species and other substances focusing on radicals are supplied to the cells and then collectively work to introduce nucleic acids in the cell. In this paper, we focus on the electrical factors to identify whether the electric field or electrical current is the major factor acting on the cells. More specifically, we built a spatial distribution model that uses an electrical network to represent the buffer solution and cells separately, as a substitute for the previously reported uniform medium model (based on the finite element method), calculated the voltage and electrical current acting on cells, and examined their intensity. Although equivalent circuit models of single cells are widely used, this study was a novel attempt to build a model wherein adherent cells distributed in two dimensions were represented as a group of equivalent cell circuits and analyzed as an electrical network that included a buffer solution and a 96-well plate. Using this model, we could demonstrate the feasibility of applying equivalent circuit network analysis to calculate electrical factors using fewer components than those required for the finite element method, with regard to electrical processing systems targeting organisms. The results obtained through this equivalent circuit network analysis revealed for the first time that the distribution of voltage and current applied to a cellular membrane matched the spatial distribution of experimentally determined gene transfection efficiency and that the electrical current is the major factor contributing to introduction.
Collapse
Affiliation(s)
- Yugo Kido
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
- Pearl Kogyo Co., Ltd., Suminoe, Osaka, Japan
| | - Hideki Motomura
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
| | - Yoshihisa Ikeda
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
| | - Susumu Satoh
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
- Y’s Corp., Tama, Tokyo, Japan
| | - Masafumi Jinno
- Department of Electrical and Electronic Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
5
|
Jaroszeski MJ, Harvey-Chapman T, Hoff A, Atkins R, Connolly RJ. Direct Current Helium Plasma for In vivo Delivery of Plasmid DNA Encoding Erythropoietin to Murine Skin. PLASMA MEDICINE 2017; 7:261-271. [PMID: 30854158 DOI: 10.1615/plasmamed.2017019506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of electric fields in vivo to deliver DNA, called electroporation, has the potential to broadly impact vaccination and disease treatment. The evidence for this has emerged from a large number of recently completed and ongoing clinical trials. The methods for applying electric fields to tissues traditionally involve contact between metal electrodes and the tissue. In this study, we investigated the use of helium plasma as a noncontact method for electrically treating tissue in a manner that results in the uptake and expression of foreign DNA in murine skin. More specifically, our goal was to demonstrate that DNA encoding a model-secreted protein could be delivered, detected in the blood, and remain functional to produce its known biological effect. Murine erythropoietin (EPO) was the model-secreted protein. Results clearly demonstrated that an intradermal DNA injection followed by plasma treatment for 2 min resulted in elevated levels of EPO in the blood and corresponding hemoglobin increases that were statistically significant relative to DNA injection alone.
Collapse
Affiliation(s)
- Mark J Jaroszeski
- Dept of Chemical and Biomedical Engineering, University of South Florida, College of Engineering, Tampa, FL.,Center for Molecular Delivery, University of South Florida, Tampa, FL
| | - Taryn Harvey-Chapman
- Dept of Chemical and Biomedical Engineering, University of South Florida, College of Engineering, Tampa, FL.,Center for Molecular Delivery, University of South Florida, Tampa, FL
| | - Andrew Hoff
- Center for Molecular Delivery, University of South Florida, Tampa, FL.,Department of Electrical Engineering, University of South Florida College of Engineering, Tampa, FL
| | - Reginald Atkins
- Dept of Chemical and Biomedical Engineering, University of South Florida, College of Engineering, Tampa, FL.,Center for Molecular Delivery, University of South Florida, Tampa, FL
| | - Richard J Connolly
- Dept of Chemical and Biomedical Engineering, University of South Florida, College of Engineering, Tampa, FL.,Center for Molecular Delivery, University of South Florida, Tampa, FL
| |
Collapse
|
6
|
Chetty NK, Chonco L, Ijumba NM, Chetty L, Govender T, Parboosing R, Davidson IE. Analysis of Current Pulses in HeLa-Cell Permeabilization Due to High Voltage DC Corona Discharge. IEEE Trans Nanobioscience 2016; 15:526-532. [PMID: 27824575 DOI: 10.1109/tnb.2016.2585624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Corona discharges are commonly utilized for numerous practical applications, including bio-technological ones. The corona induced transfer of normally impermeant molecules into the interior of biological cells has recently been successfully demonstrated. The exact nature of the interaction of the corona discharge with a cell membrane is still unknown, however, previous studies have suggested that it is either the electric fields produced by ions or the chemical interaction of the reactive species that result in the disruption of the cell membrane. This disruption of the cell membrane allows molecules to permeate into the cell. Corona discharge current constitutes a series of pulses, and it is during these pulses that the ions and reactive species are produced. It stands to reason, therefore, that the nature of these corona pulses would have an influence on the level of cell permeabilization and cell destruction. In this investigation, an analysis of the width, rise-time, characteristic frequencies, magnitude, and repetition rate of the nanosecond pulses was carried out in order to establish the relationship between these factors and the levels of cell membrane permeabilization and cell destruction. Results obtained are presented and discussed.
Collapse
|
7
|
Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection. Arch Biochem Biophys 2016; 605:59-66. [PMID: 27136710 DOI: 10.1016/j.abb.2016.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/29/2016] [Accepted: 04/24/2016] [Indexed: 01/02/2023]
Abstract
This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors.
Collapse
|
8
|
Connolly RJ, Hoff AM, Gilbert R, Jaroszeski MJ. Optimization of a plasma facilitated DNA delivery method. Bioelectrochemistry 2014; 103:15-21. [PMID: 25455213 DOI: 10.1016/j.bioelechem.2014.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022]
Abstract
Plasma-based methods have recently emerged as a technique for augmenting plasmid DNA delivery to skin. This delivery modality relies on the deposition of ionized gas molecules on to targeted cells or tissue to establish an electric field. It is hypothesized that this electric field results in the dielectric breakdown of cell membranes, making cells permeable to exogenous molecules. This in vivo investigation sought to optimize the intradermal delivery of a luciferase expressing plasmid DNA by modulating the total exposure to the plasma source and the plasmid DNA dose. Varying the plasma exposure time from 2, 5, 10, and 20 min allowed the conditions resulting in the highest expression of luciferase to be found. These conditions correlated to the 10 minute exposure time for a plasma derived from either +8 kV or -8 kV, when the generator was operated 3 cm from the epidermal tissue surface with a helium flow rate of 15 L/min. Exposing the injected flank skin for 10 min resulted in a rise of 37.3-fold for a plasma created with +8 kV and 27.1-fold for a plasma created with -8 kV. When using this treatment time with 50, 100, or 200 μg of a luciferase expressing plasmid, it was found that 100 μg resulted in the highest peak luminescence.
Collapse
Affiliation(s)
- Richard J Connolly
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Andrew M Hoff
- Department of Electrical Engineering, College of Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Richard Gilbert
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Mark J Jaroszeski
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States.
| |
Collapse
|
9
|
Santos LP, Bernardes JS, Galembeck F. Corona-treated polyethylene films are macroscopic charge bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:892-901. [PMID: 23256838 DOI: 10.1021/la304322w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Top and bottom surfaces of polyethylene (PE) films exposed to corona discharge display large and opposite electrostatic potentials, forming an electric bilayer in agreement with recent and unexpected findings from Zhiqiang et al. Water wetting, chemical composition and roughness of the two surfaces are different. Surprisingly, the bottom surface, opposite to the corona electrode is charged but it is not oxidized, neither is it wetted with water. Moreover, its morphology is unaltered by charging, while the hydrophilic top surface is much rougher with protruding islands that are the result of oxidation followed by phase separation and polymer-polymer dewetting. Common liquids extract the oxidized, hydrophilic material formed at the upper surface, a result that explains the well-known sensitivity of adhesive joints made using corona-treated thermoplastics to liquids, especially water. These results show that poling the surface closer to the corona electrode triggers another but different charge build-up process at the opposite surface. The outcome is another poled PE surface showing high potential but with unchanged chemical composition, morphology and wetting behavior as the pristine surface, thus opening new possibilities for surface engineering.
Collapse
Affiliation(s)
- Leandra P Santos
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas SP, Brazil
| | | | | |
Collapse
|
10
|
Connolly RJ, Chapman T, Hoff AM, Kutzler MA, Jaroszeski MJ, Ugen KE. Non-contact helium-based plasma for delivery of DNA vaccines. Enhancement of humoral and cellular immune responses. Hum Vaccin Immunother 2012; 8:1729-33. [PMID: 22894954 DOI: 10.4161/hv.21624] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Non-viral in vivo administration of plasmid DNA for vaccines and immunotherapeutics has been hampered by inefficient delivery. Methods to enhance delivery such as in vivo electroporation (EP) have demonstrated effectiveness in circumventing this difficulty. However, the contact-dependent nature of EP has resulting side effects in animals and humans. Noncontact delivery methods should, in principle, overcome some of these obstacles. This report describes a helium plasma-based delivery system that enhanced humoral and cellular antigen-specific immune responses in mice against an intradermally administered HIV gp120-expressing plasmid vaccine (pJRFLgp120). The most efficient plasma delivery parameters investigated resulted in the generation of geometric mean antibody-binding titers that were 19-fold higher than plasmid delivery alone. Plasma mediated delivery of pJRFLgp120 also resulted in a 17-fold increase in the number of interferon-gamma spot-forming cells, a measure of CD8+ cytotoxic T cells, compared with non-facilitated plasmid delivery. This is the first report demonstrating the ability of this contact-independent delivery method to enhance antigen-specific immune responses against a protein generated by a DNA vaccine.
Collapse
Affiliation(s)
- Richard J Connolly
- Center for Molecular Delivery, University of South Florida; Tampa, FL, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Connolly RJ, Rey JI, Lambert VM, Wegerif G, Jaroszeski MJ, Ugen KE. Enhancement of antigen specific humoral immune responses after delivery of a DNA plasmid based vaccine through a contact-independent helium plasma. Vaccine 2010; 29:6781-4. [PMID: 21195804 DOI: 10.1016/j.vaccine.2010.12.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Non-viral in vivo delivery of DNA, encoding for specific proteins, has traditionally relied on chemical or physical forces applied directly to tissues. Physical methods typically involve contact between an applicator/electrode and tissue and often results in transient subject discomfort. To overcome these limitations of contact-dependent delivery, a helium plasma source was utilized to deposit ionized gasses to treatment/vaccination sites without direct contact between the applicator and the tissues. The study reported here evaluated the efficacy of this strategy as an effective method to administer DNA vaccines. Balb/C mice were vaccinated with a DNA plasmid expressing an HIVgp120 envelope glycoprotein either with or without co-administration of helium plasma or electroporation. The results indicated, for the first time, the potential efficacy of helium plasma delivery for the induction and enhancement of antigen specific immune responses following DNA vaccination.
Collapse
Affiliation(s)
- Richard J Connolly
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620, USA
| | | | | | | | | | | |
Collapse
|
12
|
Connolly RJ, Lopez GA, Hoff AM, Jaroszeski MJ. Characterization of plasma mediated molecular delivery to cells in vitro. Int J Pharm 2010; 389:53-7. [PMID: 20083175 DOI: 10.1016/j.ijpharm.2010.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/29/2009] [Accepted: 01/10/2010] [Indexed: 10/20/2022]
Abstract
Ion-based strategies have recently emerged as a method to facilitate molecular delivery. These methods are attractive as they separate the applicator from the treatment site avoiding some issues encountered with other electrically driven methods. Current literature on plasma delivery has shown utility in vitro and in vivo for both drugs and genes. To advance this technology more information must become available on the mechanism responsible for delivery and the effects of ion exposure on eukaryotic cells. This in vitro investigation found that molecular delivery facilitated by a DC-based plasma follows a dose-response behavior, with optimum uptake of Sytox Green occurring in two cell lines after 600 s of exposure. In both cell lines exposure to the discharge caused no adverse effects in viability for exposure times up to 600 s. It was also found that membranes treated with ions remained permeabilized for several minutes following plasma treatment and that membrane resealing exhibited first order kinetics.
Collapse
Affiliation(s)
- Richard J Connolly
- Department of Chemical and Biomedical Engineering, University of South Florida, ENB 118, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | | | | | | |
Collapse
|
13
|
Connolly RJ, Lopez GA, Hoff AM, Jaroszeski MJ. Plasma facilitated delivery of DNA to skin. Biotechnol Bioeng 2009; 104:1034-40. [PMID: 19557830 DOI: 10.1002/bit.22451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Non-viral delivery of cell-impermeant drugs and DNA in vivo has traditionally relied upon either chemical or physical stress applied directly to target tissues. Physical methods typically use contact between an applicator, or electrode, and the target tissue and may involve patient discomfort. To overcome contact-dependent limitations of such delivery methodologies, an atmospheric helium plasma source was developed to deposit plasma products onto localized treatment sites. Experiments performed in murine skin showed that samples injected with plasmid DNA encoding luciferase and treated with plasma demonstrated increased levels of expression relative to skin samples that received injections of DNA alone. Increased response relative to injection alone was observed when either positive or negative voltage was used to generate the helium plasma. Quantitative results over a 26-day follow-up period showed that luciferase levels as high as 19-fold greater than the levels obtained by DNA injection alone could be achieved. These findings indicate that plasmas may compete with other physical delivery methodologies when skin is the target tissue.
Collapse
Affiliation(s)
- Richard J Connolly
- Department of Chemical and Biomedical Engineering, University of South Florida, ENB 118, Tampa, Florida 33620, USA
| | | | | | | |
Collapse
|