1
|
Smieszek A, Marycz K, Szustakiewicz K, Kryszak B, Targonska S, Zawisza K, Watras A, Wiglusz RJ. New approach to modification of poly (l-lactic acid) with nano-hydroxyapatite improving functionality of human adipose-derived stromal cells (hASCs) through increased viability and enhanced mitochondrial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 98:213-226. [PMID: 30813022 DOI: 10.1016/j.msec.2018.12.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/29/2018] [Accepted: 12/25/2018] [Indexed: 02/06/2023]
Abstract
The aim of this study was to determine the cytocompatibility of poly (l-lactide) (PLLA) scaffolds fabricated using co-rotating twin screw extrusion technique and functionalized with different concentrations of nano-hydroxyapatite (nHAp). The efforts were aimed on the designing bioactive scaffolds improving the viability and metabolic activity of human adipose-derived multipotent stromal cells (hASCs). The in vitro study was designed to determine the optimal nHAp concentration, based on analysis of hASCs morphology, adhesion rate, as well as metabolic and proliferative potential. Initially, the PLLA filled with three different concentrations of the nHAp were tested i.e. 5%, 10% and 15 wt%. The obtained results indicated that the 10 wt% nHAp in the PLLA (10% nHAp/PLLA) matrices improved the adhesion and proliferation of the hASCs, what was in good agreement with the results of tensile properties of the composites. Further, we performed profound studies regarding the cytotoxicity of 10% nHAp/PLLA. The analysis included the evaluation of the biomaterial influence on viability, apoptosis-related markers expression profile and mitochondrial function. The cytocompatibility of 10% nHAp/PLLA scaffolds toward the hASCs was confirmed. The hASCs propagated on 10% nHAp/PLLA were more viable then those propagated on the plain PLLA. The level of pro-apoptotic markers, i.e. caspase-3 and Bax in cultures on 10% nHAp/PLLA was significantly decreased. Obtained results correlated with higher mitochondrial membrane potential of hASCs in those cultures. The obtained composites may improve therapeutic potential of hASCs via directing their adhesion, enhancing proliferation and viability as well as increasing mitochondrial potential, thus may find potential application in tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Smieszek
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Chełmonskiego 27B, 50-375 Wroclaw, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Chełmonskiego 27B, 50-375 Wroclaw, Poland; Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University Giessen Frankfurter Str. 94, 35392 Giessen, Germany
| | - Konrad Szustakiewicz
- Polymer Engineering and Technology Division, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Bartłomiej Kryszak
- Polymer Engineering and Technology Division, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Katarzyna Zawisza
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Adam Watras
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland.
| |
Collapse
|
2
|
Cui X, Liang T, Liu C, Yuan Y, Qian J. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:453-460. [DOI: 10.1016/j.msec.2016.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
|
3
|
Velard F, Braux J, Amedee J, Laquerriere P. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater 2013; 9:4956-63. [PMID: 23036944 DOI: 10.1016/j.actbio.2012.09.035] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite (HA) and amorphous calcium phosphate (CaP) crystals deposited in an organic matrix. One objective of bone tissue engineering is to mimic the chemical and structural properties of this complex tissue. CaP ceramics, such as sintered HA and beta-tricalcium phosphate, are widely used as bone substitutes or prosthesis coatings because of their osteoconductive properties. These ceramic interactions with tissues induce a cell response that can be different according to the composition of the material. In this review, we discuss inflammatory cell responses to CaP materials to provide a comprehensive overview of mechanisms governing the integration or loosening of implants, which remains a major concern in tissue engineering. A focus on the effects of the functionalization of CaP biomaterials highlights potential ways to increase tissue integration and limit rejection processes.
Collapse
|
4
|
Lim HK, Asharani PV, Hande MP. Enhanced genotoxicity of silver nanoparticles in DNA repair deficient Mammalian cells. Front Genet 2012; 3:104. [PMID: 22707954 PMCID: PMC3374476 DOI: 10.3389/fgene.2012.00104] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/21/2012] [Indexed: 11/25/2022] Open
Abstract
Silver nanoparticles (Ag-np) have been used in medicine and commercially due to their anti-microbial properties. Therapeutic potentials of these nanoparticles are being explored extensively despite the lack of information on their mechanism of action at molecular and cellular level. Here, we have investigated the DNA damage response and repair following Ag-np treatment in mammalian cells. Studies have shown that Ag-np exerts genotoxicity through double-strand breaks (DSBs). DNA-PKcs, the catalytic subunit of DNA dependent protein kinase, is an important caretaker of the genome which is known to be the main player mediating Non-homologous End-Joining (NHEJ) repair pathway. We hypothesize that DNA-PKcs is responsible for the repair of Ag-np induced DNA damage. In vitro studies have been carried out to investigate both cytotoxicity and genotoxicity induced by Ag-np in normal human cells, DNA-PKcs proficient, and deficient mammalian cells. Chemical inhibition of DNA-PKcs activity with NU7026, an ATP-competitive inhibitor of DNA-PKcs, has been performed to further validate the role of DNA-PKcs in this model. Our results suggest that Ag-np induced more prominent dose-dependent decrease in cell viability in DNA-PKcs deficient or inhibited cells. The deficiency or inhibition of DNA-PKcs renders the cells with higher susceptibility to DNA damage and genome instability which in turn contributed to greater cell cycle arrest/cell death. These findings support the fact that DNA-PKcs is involved in the repair of Ag-np induced genotoxicity and NHEJ repair pathway and DNA-PKcs particularly is activated to safeguard the genome upon Ag-np exposure.
Collapse
Affiliation(s)
- Hui Kheng Lim
- Genome Stability Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | | | | |
Collapse
|
5
|
Ding T, Xue Y, Lu H, Huang Z, Sun J. Effect of particle size of hydroxyapatite nanoparticles on its biocompatibility. IEEE Trans Nanobioscience 2012; 11:336-40. [PMID: 22438516 DOI: 10.1109/tnb.2012.2190418] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nano-particulate biomaterials have been used in clinical diagnosis and treatment, as drug carrier or in cosmetics because of their excellent performance properties. The toxicity and biocompatibility of nanoparticles (NPs), however, are always a focused concern for a doctor or a scientist. At present, there is almost no systemic evaluation standard or testing methods of safety for nanoparticles. In this study, two kinds of hydroxylapatite, (HAP) NPs with different particle sizes were selected. A number of biocompatibility tests in vivo or in vitro were conducted. They were cytotoxicity (MTT assay), genotoxicity (Ames, Mouse Lymphoma Mutagenesis Assay), and systemic toxicity (Acute and Subacute). The results indicated that, under the concentration of 100 mg/L, both HAP NPs could cause significant inhibition of cell growth. The size of NPs might have close tie with cell response. The mutagenic test in vitro was negative in this study. Histopathological findings showed that both kinds of HAP NPs could induce pseudotubercles in lung. Moreover, smaller size of nanoparticles resulted in a vacuolar degeneration of nephric tubule epithelium at 7 days post-intraveneous injection. The results implied that the size of NPs might play an important role in the biocompatibility of the materials. The kidney might be the main organ of discharge of nanoparticles from body.
Collapse
Affiliation(s)
- Tingting Ding
- Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University/ Shanghai Biomaterials Research & Testing Center, Shanghai 200023, China.
| | | | | | | | | |
Collapse
|