1
|
Ilyas A, Odatsu T, Shah A, Monte F, Kim HKW, Kramer P, Aswath PB, Varanasi VG. Amorphous Silica: A New Antioxidant Role for Rapid Critical-Sized Bone Defect Healing. Adv Healthc Mater 2016; 5:2199-213. [PMID: 27385056 PMCID: PMC6635139 DOI: 10.1002/adhm.201600203] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/25/2016] [Indexed: 12/23/2022]
Abstract
Traumatic fractures cause structurally unstable sites due to severe bone loss. Such fractures generate a high yield of reactive oxygen species (ROS) that can lead to oxidative stress. Excessive and prolonged ROS activity impedes osteoblast differentiation and instigates long healing times. Stimulation of antioxidants such as superoxide dismutase (SOD1), are crucial to reduce ROS, stimulate osteogenesis, and strengthen collagen and mineral formation. Yet, no current fixative devices have shown an ability to enhance collagen matrix formation through antioxidant expression. This study reports plasma-enhanced chemical vapor deposition based amorphous silicon oxynitride (Si(ON)x) as a potential new fracture healing biomaterial that adheres well to the implant surface, releases Si(+4) to enhance osteogenesis, and forms a surface hydroxyapatite for collagen mineral attachment. These materials provide a sustained release of Si(+4) in physiological environment for extended times. The dissolution rate partially depends on the film chemistry and can be controlled by varying O/N ratio. The presence of Si(+4) enhances SOD1, which stimulates other osteogenic markers downstream and leads to rapid mineral formation. In vivo testing using a rat critical-sized calvarial defect model shows a more rapid bone-regeneration for these biomaterials as compared to control groups, that implies the clinical significance of the presented biomaterial.
Collapse
Affiliation(s)
- Azhar Ilyas
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA
| | - Tetsuro Odatsu
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
| | - Ami Shah
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Felipe Monte
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, TX, 75219, USA
| | - Harry K W Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, TX, 75219, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Philip Kramer
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA
| | - Pranesh B Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Venu G Varanasi
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|
2
|
Lowe CJ, Reucroft IM, Grota MC, Shreiber DI. Production of Highly Aligned Collagen Scaffolds by Freeze-drying of Self-assembled, Fibrillar Collagen Gels. ACS Biomater Sci Eng 2016; 2:643-651. [PMID: 27430016 DOI: 10.1021/acsbiomaterials.6b00036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix and cellular alignment are critical factors in the native function of many tissues, including muscle, nerve, and ligaments. Collagen is frequently a component of these aligned tissues, and collagen biomaterials are widely used in tissue engineering applications. However, the generation of aligned collagen scaffolds that maintain the native architecture of collagen fibrils has not been straightforward, with many methods requiring specialized equipment or technical procedures, extensive incubation times, or denaturing of the collagen. Herein, we present a simple, rapid method for fabrication of highly aligned collagen scaffolds. Collagen was assembled to form a fibrillar hydrogel in a cylindrical conduit with high aspect ratio and then frozen and lyophilized. The resulting collagen scaffolds demonstrated highly aligned topographical features along the scaffold surface. This presence of an initial fibrillar network and the high-aspect ratio vessel were both required to generate alignment. The diameter of fabricated scaffolds was found to vary significantly with both the collagen concentration of the hydrogel suspension and the diameter of conduits used for fabrication. Additionally, the size of individual aligned topographical features was significantly dependent on the conduit diameter and the freezing temperature. When cultured on aligned collagen scaffolds, both rat dermal fibroblasts and axons emerging from chick dorsal root ganglia explants demonstrated elongated, aligned morphology and growth on the aligned topographical features. Overall, this method presents a simple means for generating aligned collagen scaffolds that can be applied to a wide variety of tissue types, particularly those where such alignment is critical to native function.
Collapse
Affiliation(s)
- Christopher J Lowe
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Ian M Reucroft
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Matthew C Grota
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts 02747, United States
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Ilyas A, Lavrik NV, Kim HK, Aswath PB, Varanasi VG. Enhanced interfacial adhesion and osteogenesis for rapid "bone-like" biomineralization by PECVD-based silicon oxynitride overlays. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15368-15379. [PMID: 26095187 PMCID: PMC6508966 DOI: 10.1021/acsami.5b03319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structurally unstable fracture sites require metal fixative devices, which have long healing times due to their lack of osteoinductivity. Bioactive glass coatings lack in interfacial bonding, delaminate, and have reduced bioactivity due to the high temperatures used for their fabrication. Here, we test the hypothesis that low-temperature PECVD amorphous silica can enhance adhesion to the underlying metal surface and that N incorporation enhances osteogenesis and rapid biomineralization. A model Ti/TiO2-SiOx interface was formed by first depositing Ti onto Si wafers, followed by surface patterning, thermal annealing to form TiO2, and depositing SiOx/Si(ON)x overlays. TEM micrographs showed conformal SiOx layers on Ti/TiO2 overlays while XPS data revealed the formation of an elemental Ti-O-Si interface. Nanoscratch testing verified strong SiOx bonding with the underlying TiO2 layers. In vitro studies showed that the surface properties changed significantly to reveal the formation of hydroxycarbonate apatite within 6 h, and Si(ON)x surface chemistry induced osteogenic gene expression of human periosteal cells and led to a rapid "bone-like" biomineral formation within 4 weeks. XANES data revealed that the incorporation of N increased the surface HA bioactivity by increasing the carbonate to phosphate ratio. In conclusion, silicon oxynitride overlays on bone-implant systems enhance osteogenesis and biomineralization via surface nitrogen incorporation.
Collapse
Affiliation(s)
- Azhar Ilyas
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M University, 3302 Gaston Avenue, Dallas, Texas 75246, United States
| | - Nickolay V. Lavrik
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Harry K.W. Kim
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, 2222 Welborn Street, Dallas, Texas 75219, United States
| | - Pranesh B. Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, 501 West First Street, Arlington, Texas 76019, United States
| | - Venu G. Varanasi
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M University, 3302 Gaston Avenue, Dallas, Texas 75246, United States
| |
Collapse
|
4
|
Gilchrist CL, Ruch DS, Little D, Guilak F. Micro-scale and meso-scale architectural cues cooperate and compete to direct aligned tissue formation. Biomaterials 2014; 35:10015-24. [PMID: 25263687 DOI: 10.1016/j.biomaterials.2014.08.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
Abstract
Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, "micro-scale" cues on the order of ∼1-2 μm, and "meso-scale" cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (∼500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes.
Collapse
Affiliation(s)
| | - David S Ruch
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Dianne Little
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
5
|
Huan Z, Fratila-Apachitei LE, Apachitei I, Duszczyk J. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing. NANOTECHNOLOGY 2014; 25:055602. [PMID: 24407375 DOI: 10.1088/0957-4484/25/5/055602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.
Collapse
Affiliation(s)
- Z Huan
- Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | | | | | | |
Collapse
|
6
|
López-Bosque MJ, Tejeda-Montes E, Cazorla M, Linacero J, Atienza Y, Smith KH, Lladó A, Colombelli J, Engel E, Mata A. Fabrication of hierarchical micro-nanotopographies for cell attachment studies. NANOTECHNOLOGY 2013; 24:255305. [PMID: 23727615 DOI: 10.1088/0957-4484/24/25/255305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report on the development of micro/nanofabrication processes to create hierarchical surface topographies that expand from 50 nm to microns in size on different materials. Three different approaches (named FIB1, FIB2, and EBL) that combine a variety of techniques such as photolithography, reactive ion etching, focused ion beam lithography, electron beam lithography, and soft lithography were developed, each one providing different advantages and disadvantages. The EBL approach was employed to fabricate substrates comprising channels with features between 200 nm and 10 μm in size on polymethylmethacrylate (PMMA), which were then used to investigate the independent or competitive effects of micro- and nanotopographies on cell adhesion and morphology. Rat mesenchymal stem cells (rMSCs) were cultured on four different substrates including 10 μm wide and 500 nm deep channels separated by 10 μm distances (MICRO), 200 nm wide and 100 nm deep nanochannels separated by 200 nm distances (NANO), their combination in parallel (PARAL), and in a perpendicular direction (PERP). Rat MSCs behaved differently on all tested substrates with a high degree of alignment (as measured by both number of aligned cells and average angle) on both NANO and MICRO. Furthermore, cells exhibited the highest level of alignment on PARAL, suggesting a synergetic effect of the two scales of topographies. On the other hand, cells on PERP exhibited the lowest alignment and a consistent change in morphology over time that seemed to be the result of interactions with both micro- and nanochannels positioned in the perpendicular direction, also suggesting a competitive effect of the topographies.
Collapse
Affiliation(s)
- M J López-Bosque
- The Nanotechnology Platform, Parc Científic Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Biomaterials 2011; 32:7297-308. [PMID: 21742375 DOI: 10.1016/j.biomaterials.2011.06.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/14/2011] [Indexed: 02/07/2023]
Abstract
This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100 nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone-implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro-nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50 μm proximity of the implant surfaces, which was increased 2-3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50-200 μm zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone-implant contact, which was increased 4-5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5-7% soft tissue intervention compared with 60-75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone-implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone-implant integration, has clearly been demonstrated.
Collapse
|
8
|
The difference of fibroblast behavior on titanium substrata with different surface characteristics. Odontology 2011; 100:199-205. [PMID: 21691715 DOI: 10.1007/s10266-011-0029-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
Connective tissue, one of the main components of peri-implant soft tissue, is key to the formation of the peri-implant mucosal seal and helping to prevent epithelial ingrowth. Rough surfaces (Rs), machined surfaces (Ms) or microgrooved surface (MG) are used in the neck area of commercially available titanium implants. In this paper, we aimed to evaluate the influence of surface topography of titanium substratum on connective tissue fibroblasts to gain a better understanding of this effect. Fibroblasts were cultured on titanium plates with Rs, Ms and MG. Adhesion cell number at day 3 was compared and protein distribution of both F-actin and vinculin was determined to observe cellular structure and adhesion. Cell adhesion strength was compared on each surface. At day 3, the number of fibroblasts attached on each substratum was in the order of MG ≈ Ms > Rs. Fibroblasts strongly expressed vinculin in the peripheral area on Ms and MG, and showed strong F-actin architecture. Decreased expression of vinculin and weaker continuity of F-actin were observed on Rs. Fibroblasts on MG were aligned along the grooves, with a significantly higher cell density, whereas cells on Ms and Rs had no clear orientation. The cell adhesion strength was significantly lower on Rs, and no significant difference was seen between MG and Ms. Both MG and Ms showed greater adhesion cell numbers and adhesion strength of fibroblasts when compared with Rs at day 3. The cell density on MG was greater than those on other substrata.
Collapse
|
9
|
Hori N, Iwasa F, Ueno T, Takeuchi K, Tsukimura N, Yamada M, Hattori M, Yamamoto A, Ogawa T. Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Dent Mater 2009; 26:275-87. [PMID: 20006380 DOI: 10.1016/j.dental.2009.11.077] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 01/25/2023]
Abstract
OBJECTIVE There is a great demand for dental implant surfaces to accelerate the process of peri-implant bone generation to reduce its healing time and enable early loading. To this end, an inverse correlation between the proliferation and functional maturation (differentiation) in osteoblasts presents a challenge for the rapid generation of greater amounts of bone. For instance, osteoblasts exhibit faster differentiation but slower proliferation on micro-roughened titanium surfaces. Using a unique micro-nano-hierarchical topography of TiO(2) that mimics biomineralized matrices, this study demonstrates that this challenge can be overcome without the use of biological agents. METHODS Titanium disks of grade 2 commercially pure titanium were prepared by machining (smooth surface). To create a microtexture with peaks and valleys (micropit surface), titanium disks were acid-etched. To create 200-nm TiO(2) nanonodules within the micropits (nanonodule-in-micropit surface), TiO(2) was sputter-deposited onto the acid-etched surface. Rat bone marrow-derived osteoblasts and NIH3T3 fibroblasts were cultured on machined smooth, micropit, and nanonodule-in-micropit surfaces. RESULTS Despite the substantially increased surface roughness, the addition of 200-nm nanonodules to micropits increased osteoblast proliferation while enhancing their functional differentiation. In contrast, this nanonodule-in-micropit surface decreased proliferation and function in fibroblasts. SIGNIFICANCE The data suggest the establishment of cell-selectively functionalized nano-in-micro smart titanium surfaces that involve a regulatory effect on osteoblast proliferation, abrogating the inhibitory mechanism on the micropitted surface, while enhancing their functional differentiation. Biomimetic and controllable nature of this nanonodules-in-micropits surface may offer a novel micro-to-nanoscale hierarchical platform to biologically optimize nanofeatures of biomaterials. Particularly, this micro-nano-hybrid surface may be an effective approach to improve current dental implant surfaces for accelerated bone integration.
Collapse
Affiliation(s)
- Norio Hori
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 2009; 30:5319-29. [DOI: 10.1016/j.biomaterials.2009.06.021] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022]
|