1
|
Djamgoz MBA. Stemness of Cancer: A Study of Triple-negative Breast Cancer From a Neuroscience Perspective. Stem Cell Rev Rep 2025; 21:337-350. [PMID: 39531198 PMCID: PMC11872763 DOI: 10.1007/s12015-024-10809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Stemness, giving cancer cells massive plasticity enabling them to survive in dynamic (e.g. hypoxic) environments and become resistant to treatment, especially chemotherapy, is an important property of aggressive tumours. Here, we review some essentials of cancer stemness focusing on triple-negative breast cancer (TNBC), the most aggressive form of all breast cancers. TNBC cells express a range of genes and mechanisms associated with stemness, including the fundamental four "Yamanaka factors". Most of the evidence concerns the transcription factor / oncogene c-Myc and an interesting case is the expression of the neonatal splice variant of voltage-gated sodium channel subtype Nav1.5. On the whole, measures that reduce the stemness make cancer cells less aggressive, reducing their invasive/metastatic potential and increasing/restoring their chemosensitivity. Such measures include gene silencing techniques, epigenetic therapies as well as novel approaches like optogenetics aiming to modulate the plasma membrane voltage. Indeed, simply hyperpolarizing their membrane potential can make stem cells differentiate. Finally, we give an overview of the clinical aspects and exploitation of cancer/TNBC stemness, including diagnostics and therapeutics. In particular, personalised mRNA-based therapies and mechanistically meaningful combinations are promising and the emerging discipline of 'cancer neuroscience' is providing novel insights to both fundamental issues and clinical applications.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Rotherham M, Nahar T, Broomhall TJ, Telling ND, El Haj AJ. Remote magnetic actuation of cell signalling for tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Estévez M, Montalbano G, Gallo-Cordova A, Ovejero JG, Izquierdo-Barba I, González B, Tomasina C, Moroni L, Vallet-Regí M, Vitale-Brovarone C, Fiorilli S. Incorporation of Superparamagnetic Iron Oxide Nanoparticles into Collagen Formulation for 3D Electrospun Scaffolds. NANOMATERIALS 2022; 12:nano12020181. [PMID: 35055200 PMCID: PMC8778221 DOI: 10.3390/nano12020181] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023]
Abstract
Nowadays, there is an ever-increasing interest in the development of systems able to guide and influence cell activities for bone regeneration. In this context, we have explored for the first time the combination of type-I collagen and superparamagnetic iron oxide nanoparticles (SPIONs) to design magnetic and biocompatible electrospun scaffolds. For this purpose, SPIONs with a size of 12 nm were obtained by thermal decomposition and transferred to an aqueous medium via ligand exchange with dimercaptosuccinic acid (DMSA). The SPIONs were subsequently incorporated into type-I collagen solutions to prove the processability of the resulting hybrid formulation by means of electrospinning. The optimized method led to the fabrication of nanostructured scaffolds composed of randomly oriented collagen fibers ranging between 100 and 200 nm, where SPIONs resulted distributed and embedded into the collagen fibers. The SPIONs-containing electrospun structures proved to preserve the magnetic properties of the nanoparticles alone, making these matrices excellent candidates to explore the magnetic stimuli for biomedical applications. Furthermore, the biological assessment of these collagen scaffolds confirmed high viability, adhesion, and proliferation of both pre-osteoblastic MC3T3-E1 cells and human bone marrow-derived mesenchymal stem cells (hBM-MSCs).
Collapse
Affiliation(s)
- Manuel Estévez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (G.M.); (C.V.-B.)
| | - Alvaro Gallo-Cordova
- Department of Energy Environment and Health, Instituto de Ciencia de Materiales de Madrid C.S.I.C., Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; (A.G.-C.); (J.G.O.)
| | - Jesús G. Ovejero
- Department of Energy Environment and Health, Instituto de Ciencia de Materiales de Madrid C.S.I.C., Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; (A.G.-C.); (J.G.O.)
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (I.I.-B.); (S.F.)
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28040 Madrid, Spain
| | - Clarissa Tomasina
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands; (C.T.); (L.M.)
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands; (C.T.); (L.M.)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28040 Madrid, Spain
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (G.M.); (C.V.-B.)
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (G.M.); (C.V.-B.)
- Correspondence: (I.I.-B.); (S.F.)
| |
Collapse
|
4
|
Orel VB, Syvak LA, Orel VE. Remote control of magnetic nanocomplexes for delivery and destruction of cancer cells. J Biomater Appl 2021; 36:872-881. [PMID: 33840254 DOI: 10.1177/08853282211005098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although nanotechnology advances have been exploited for a myriad of purposes, including cancer diagnostics and treatment, still there is little discussion about the mechanisms of remote control. Our main aim here is to explain the possibility of a magnetic field control over magnetic nanocomplexes to improve their delivery, controlled release and antitumor activity. In doing so we considered the nonlinear dynamics of magnetomechanical and magnetochemical effects based on free radical mechanisms in cancer development for future pre-clinical studies.
Collapse
|
5
|
Park KS, Bandeira E, Shelke GV, Lässer C, Lötvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10:288. [PMID: 31547882 PMCID: PMC6757418 DOI: 10.1186/s13287-019-1398-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have been identified as essential signaling mediators under both physiological and pathological conditions, and they appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues, including EVs from other cells, has been shown to influence the contents and biological activities of subsequent MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions and suggestions for knowledge gaps to be filled.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Elga Bandeira
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh V Shelke
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Li Y, Ye D, Li M, Ma M, Gu N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. Chemphyschem 2018. [DOI: 10.1002/cphc.201701294] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Dewen Ye
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Mingxi Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ming Ma
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ning Gu
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| |
Collapse
|
7
|
Pchelintseva E, Djamgoz MBA. Mesenchymal stem cell differentiation: Control by calcium-activated potassium channels. J Cell Physiol 2017; 233:3755-3768. [PMID: 28776687 DOI: 10.1002/jcp.26120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are widely used in modern medicine for which understanding the mechanisms controlling their differentiation is fundamental. Ion channels offer novel insights to this process because of their role in modulating membrane potential and intracellular milieu. Here, we evaluate the contribution of calcium-activated potassium (KCa ) channels to the three main components of MSC differentiation: initiation, proliferation, and migration. First, we demonstrate the importance of the membrane potential (Vm ) and the apparent association of hyperpolarization with differentiation. Of KCa subtypes, most evidence points to activity of big-conductance channels in inducing initiation. On the other hand, intermediate-conductance currents have been shown to promote progression through the cell cycle. While there is no information on the role of KCa channels in migration of MSCs, work from other stem cells and cancer cells suggest that intermediate-conductance and to a lesser extent big-conductance channels drive migration. In all cases, these effects depend on species, tissue origin and lineage. Finally, we present a conceptual model that demonstrates how KCa activity could influence differentiation by regulating Vm and intracellular Ca2+ oscillations. We conclude that KCa channels have significant involvement in MSC differentiation and could potentially enable novel tissue engineering approaches and therapies.
Collapse
Affiliation(s)
- Ekaterina Pchelintseva
- Department of Life Sciences, Imperial College London, South Kensington Campus, Neuroscience Solution to Cancer Research Group, London, UK.,Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, Neuroscience Solution to Cancer Research Group, London, UK
| |
Collapse
|
8
|
Kilinc D, Dennis CL, Lee GU. Bio-Nano-Magnetic Materials for Localized Mechanochemical Stimulation of Cell Growth and Death. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5672-80. [PMID: 26780501 PMCID: PMC5536250 DOI: 10.1002/adma.201504845] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticles are promising new tools for therapeutic applications, such as magnetic nanoparticle hyperthermia therapy and targeted drug delivery. Recent in vitro studies have demonstrated that a force application with magnetic tweezers can also affect cell fate, suggesting a therapeutic potential for magnetically modulated mechanical stimulation. The magnetic properties of nanoparticles that induce physical responses and the subtle responses that result from mechanically induced membrane damage and/or intracellular signaling are evaluated. Magnetic particles with various physical, geometric, and magnetic properties and specific functionalization can now be used to apply mechanical force to specific regions of cells, which permit the modulation of cellular behavior through the use of spatially and time controlled magnetic fields. On one hand, mechanochemical stimulation has been used to direct the outgrowth on neuronal growth cones, indicating a therapeutic potential for neural repair. On the other hand, it has been used to kill cancer cells that preferentially express specific receptors. Advances made in the synthesis and characterization of magnetic nanomaterials and a better understanding of cellular mechanotransduction mechanisms may support the translation of mechanochemical stimulation into the clinic as an emerging therapeutic approach.
Collapse
Affiliation(s)
- Devrim Kilinc
- Bionanosciences Lab, School of Chemistry and Chemical Biology, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| | - Cindi L. Dennis
- Material Measurement Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, Gaithersburg, MD 20899–8552, USA
| | - Gil U. Lee
- Bionanosciences Lab, School of Chemistry and Chemical Biology, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Evans EE, Ronecker JC, Han DT, Glass DR, Train TL, Deatsch AE. High-permeability functionalized silicone magnetic microspheres with low autofluorescence for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:860-869. [PMID: 26952493 PMCID: PMC5588664 DOI: 10.1016/j.msec.2016.01.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/30/2016] [Indexed: 12/13/2022]
Abstract
Functionalized magnetic microspheres are widely used for cell separations, isolation of proteins and other biomolecules, in vitro diagnostics, tissue engineering, and microscale force spectroscopy. We present here the synthesis and characterization of a silicone magnetic microsphere which can be produced in diameters ranging from 0.5 to 50 μm via emulsion polymerization of a silicone ferrofluid precursor. This bottom-up approach to synthesis ensures a uniform magnetic concentration across all sizes, leading to significant advances in magnetic force generation. We demonstrate that in a size range of 5-20 μm, these spheres supply a full order of magnitude greater magnetic force than leading commercial products. In addition, the unique silicone matrix exhibits autofluorescence two orders of magnitude lower than polystyrene microspheres. Finally, we demonstrate the ability to chemically functionalize our silicone microspheres using a standard EDC reaction, and show that our folate-functionalized silicone microspheres specifically bind to targeted HeLa and Jurkat cells. These spheres show tremendous potential for replacing magnetic polystyrene spheres in applications which require either large magnetic forces or minimal autofluorescence, since they represent order-of-magnitude improvements in each. In addition, the unique silicone matrix and proven biocompatibility suggest that they may be useful for encapsulation and targeted delivery of lipophilic pharmaceuticals.
Collapse
Affiliation(s)
| | | | - David T. Han
- Elon University, 100 Campus Drive, Elon, NC 27244, USA
| | | | | | | |
Collapse
|
10
|
Daňková J, Buzgo M, Vejpravová J, Kubíčková S, Sovková V, Vysloužilová L, Mantlíková A, Nečas A, Amler E. Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles. Int J Nanomedicine 2015; 10:7307-17. [PMID: 26677321 PMCID: PMC4677649 DOI: 10.2147/ijn.s93670] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this study, we have developed a combined approach to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, using a new nanofibrous scaffold made by needleless electrospinning from a mixture of poly-ε-caprolactone and magnetic particles. The biological characteristics of porcine MSCs were investigated while cultured in vitro on composite scaffold enriched with magnetic nanoparticles. Our data indicate that due to the synergic effect of the poly-ε-caprolactone nanofibers and magnetic particles, cellular adhesion and proliferation of MSCs is enhanced and osteogenic differentiation is supported. The cellular and physical attributes make this new scaffold very promising for the acceleration of efficient MSC proliferation and regeneration of hard tissues.
Collapse
Affiliation(s)
- Jana Daňková
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic ; Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Matej Buzgo
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic ; Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic ; University Center for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic
| | - Jana Vejpravová
- Department of Magnetic Nanosystems, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Simona Kubíčková
- Department of Magnetic Nanosystems, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Věra Sovková
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic ; Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lucie Vysloužilová
- University Center for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic ; Department of Nonwoven Textiles, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Alice Mantlíková
- Department of Magnetic Nanosystems, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alois Nečas
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Evžen Amler
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic ; Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic ; Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| |
Collapse
|
11
|
Fayol D, Frasca G, Le Visage C, Gazeau F, Luciani N, Wilhelm C. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2611-6. [PMID: 23526452 DOI: 10.1002/adma.201300342] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 05/23/2023]
Abstract
Magnetic forces induce cell condensation necessary for stem cell differentiation into cartilage and elicit the formation of a tissue-like structure: Magnetically driven fusion of aggregates assembled by micromagnets results in the formation of a continuous tissue layer containing abundant cartilage matrix.
Collapse
Affiliation(s)
- D Fayol
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & University Paris Diderot, Paris, France
| | | | | | | | | | | |
Collapse
|