1
|
Golding LA, Callaghan P, Angel BM, Batley GE, Griffiths G, Nguyen A, Cresswell T. Evidence for low bioavailability of dietary nanoparticulate cerium in a freshwater food chain. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107228. [PMID: 39798212 DOI: 10.1016/j.aquatox.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Radioactive 141Ce in ionic (I-Ce), nano (N-Ce, 11 ± 9 nm mean primary particle size ± standard deviation) and micron-sized (M-Ce, 530 ± 440 µm) forms associated with natural and artificial diets in natural river water and synthetic freshwater were used to measure the real-time biokinetics of dietary 141Ce assimilation in a freshwater food chain. The model food chain consisted of microalgae (Raphidocelis subcapitata), snails (Potamopyrgus antipodarum) and prawns (Macrobrachium australiense). Pulse-chase experiments showed that 91-100 % of all forms of cerium associated with all diets and water types were eliminated from the digestive system of the snail and prawn within 24 h, with no detectable cerium assimilation. The prawn and snail median elimination times (ET50) and elimination rates (Ke) for all cerium forms ranged from 0.05 to 1.7 d, and 30 to >100 % per d, respectively. The pulse-chase results were supported by the autoradiographic evidence for N-Ce and M-Ce that confirmed no detectable assimilation and translocation within the tissue of the prawn over time. In contrast, the more soluble I-Ce was found to be associated in low quantities with the hepatopancreas in the prawn confirming that the lack of dissolution by N-Ce and M-Ce in the digestive environment of these organisms makes these forms less bioavailable. In addition, hetero-agglomeration of N-Ce and M-Ce resulted in particles that did not dissociate in digestive fluids and were too large to be assimilated thereby making them non-bioavailable. Based on the results from this study and from the literature review, the risk of N-Ce biomagnification and chronic dietary toxicity in freshwater ecosystems is no greater than the risk associated with M-Ce or I-Ce.
Collapse
Affiliation(s)
- Lisa A Golding
- CSIRO, Environment, EcoSciences Precinct, Lands of Turrbal, Jagera and Yuggera Peoples, Dutton Park, QLD 4102, Australia.
| | - Paul Callaghan
- ANSTO, Nuclear Science and Technology Division, Lucas Heights, NSW 2234, Australia
| | - Brad M Angel
- CSIRO, Environment, Black Mountain, Acton, ACT 2601, Australia
| | - Graeme E Batley
- Environmental Contaminants Research, Miranda, NSW 2228, Australia
| | - Grant Griffiths
- ANSTO, Nuclear Science and Technology Division, Lucas Heights, NSW 2234, Australia
| | - An Nguyen
- ANSTO, Nuclear Science and Technology Division, Lucas Heights, NSW 2234, Australia
| | - Tom Cresswell
- ANSTO, Nuclear Science and Technology Division, Lucas Heights, NSW 2234, Australia
| |
Collapse
|
2
|
Ranjbar Bahadori S, Mulgaonkar A, Hart R, Wu CY, Zhang D, Pillai A, Hao Y, Sun X. Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1671. [PMID: 33047504 DOI: 10.1002/wnan.1671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Radiolabeled metal-based nanoparticles (MNPs) have drawn considerable attention in the fields of nuclear medicine and molecular imaging, drug delivery, and radiation therapy, given the fact that they can be potentially used as diagnostic imaging and/or therapeutic agents, or even as theranostic combinations. Here, we present a systematic review on recent advances in the design and synthesis of MNPs with major focuses on their radiolabeling strategies and the determinants of their in vivo pharmacokinetics, and together how their intended applications would be impacted. For clarification, we categorize all reported radiolabeling strategies for MNPs into indirect and direct approaches. While indirect labeling simply refers to the use of bifunctional chelators or prosthetic groups conjugated to MNPs for post-synthesis labeling with radionuclides, we found that many practical direct labeling methodologies have been developed to incorporate radionuclides into the MNP core without using extra reagents, including chemisorption, radiochemical doping, hadronic bombardment, encapsulation, and isotope or cation exchange. From the perspective of practical use, a few relevant examples are presented and discussed in terms of their pros and cons. We further reviewed the determinants of in vivo pharmacokinetic parameters of MNPs, including factors influencing their in vivo absorption, distribution, metabolism, and elimination, and discussed the challenges and opportunities in the development of radiolabeled MNPs for in vivo biomedical applications. Taken together, we believe the cumulative advancement summarized in this review would provide a general guidance in the field for design and synthesis of radiolabeled MNPs towards practical realization of their much desired theranostic capabilities. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Shahab Ranjbar Bahadori
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan Hart
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Cheng-Yang Wu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dianbo Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anil Pillai
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yaowu Hao
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Pellico J, Llop J, Fernández-Barahona I, Bhavesh R, Ruiz-Cabello J, Herranz F. Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1549580. [PMID: 29358900 PMCID: PMC5735613 DOI: 10.1155/2017/1549580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/01/2017] [Indexed: 12/12/2022]
Abstract
The combination of the size-dependent properties of nanomaterials with radioisotopes is emerging as a novel tool for molecular imaging. There are numerous examples already showing how the controlled synthesis of nanoparticles and the incorporation of a radioisotope in the nanostructure offer new features beyond the simple addition of different components. Among the different nanomaterials, iron oxide-based nanoparticles are the most used in imaging because of their versatility. In this review, we will study the different radioisotopes for biomedical imaging, how to incorporate them within the nanoparticles, and what applications they can be used for. Our focus is directed towards what is new in this field, what the nanoparticles can offer to the field of nuclear imaging, and the radioisotopes hybridized with nanomaterials for use in molecular imaging.
Collapse
Affiliation(s)
- Juan Pellico
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia, Spain
| | - Irene Fernández-Barahona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Riju Bhavesh
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jesús Ruiz-Cabello
- Departamento Química Física II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Fernando Herranz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
4
|
|
5
|
Yin Y, Tan Z, Hu L, Yu S, Liu J, Jiang G. Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chem Rev 2017; 117:4462-4487. [PMID: 28212026 DOI: 10.1021/acs.chemrev.6b00693] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rapidly growing applicability of metal-containing engineered nanoparticles (MENPs) has made their environmental fate, biouptake, and transformation important research topics. However, considering the relatively low concentration of MENPs and the high concentration of background metals in the environment and in organisms, tracking the fate of MENPs in environment-related scenarios remains a challenge. Intrinsic labeling of MENPs with radioactive or stable isotopes is a useful tool for the highly sensitive and selective detection of MENPs in the environment and organisms, thus enabling tracing of their transformation, uptake, distribution, and clearance. In this review, we focus on radioactive/stable isotope labeling of MENPs for their environmental and biological tracing. We summarize the advantages of intrinsic radioactive/stable isotopes for MENP labeling and discuss the considerations in labeling isotope selection and preparation of labeled MENPs, as well as exposure routes and detection of labeled MENPs. In addition, current practice in the use of radioactive/stable isotope labeling of MENPs to study their environmental fate and bioaccumulation is reviewed. Future perspectives and potential applications are also discussed, including imaging techniques for radioactive- and stable-isotope-labeled MENPs, hyphenated multistable isotope tracers with speciation analysis, and isotope fractionation as a MENP tracer. It is expected that this critical review could provide the necessary background information to further advance the applications of isotope tracers to study the environmental fate and bioaccumulation of MENPs.
Collapse
Affiliation(s)
- Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China.,Institute of Environment and Health, Jianghan University , Wuhan 430056, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
6
|
Cho J, Wang M, Gonzalez-Lepera C, Mawlawi O, Cho SH. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers. Med Phys 2016; 43:4775. [PMID: 27487895 PMCID: PMC4967079 DOI: 10.1118/1.4958961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/16/2016] [Accepted: 07/03/2016] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. METHODS Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer to make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. RESULTS The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the (66)Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 10(6) counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed strong PET signals from mostly decaying (66)Ga. The Monte Carlo results showed that radioactive Zn@Au NPs and solid GNPs provided similar characteristics in terms of their secondary electron spectra when irradiated. CONCLUSIONS The Zn@Au NPs developed in this investigation have the potential to be used as PET-imageable radiosensitizers for radiotherapy applications as well as PET tracers for molecular imaging applications.
Collapse
Affiliation(s)
- Jongmin Cho
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Min Wang
- Department of Chemistry, Rice University, Houston, Texas 77005
| | - Carlos Gonzalez-Lepera
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sang Hyun Cho
- Departments of Radiation Physics and Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
7
|
Llop J, Jiang P, Marradi M, Gómez-Vallejo V, Echeverría M, Yu S, Puigivila M, Baz Z, Szczupak B, Pérez-Campaña C, Mao Z, Gao C, Moya SE. Visualisation of dual radiolabelled poly(lactide-co-glycolide) nanoparticle degradation in vivo using energy-discriminant SPECT. J Mater Chem B 2015; 3:6293-6300. [PMID: 32262748 DOI: 10.1039/c5tb01157d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The determination of nanoparticle (NP) stability and degradation in vivo is essential for the accurate evaluation of NP biodistribution in medical applications and for understanding their toxicological effects. Such determination is particularly challenging because NPs are extremely difficult to detect and quantify once distributed in a biological system. Radiolabelling with positron or gamma emitters and subsequent imaging studies using positron emission tomography (PET) or single-photon emission computerised tomography (SPECT) are some of the few valid alternatives. However, NPs that degrade or radionuclides that detach or are released from the NPs can cause artefact. Here, submicron-sized poly(lactide-co-glycolide) nanoparticles (PLGA-NPs) stabilised with bovine serum albumin (BSA) were dual radiolabelled using gamma emitters with different energy spectra incorporated into the core and coating. To label the core, 111In-doped iron oxide NPs were encapsulated inside PLGA-NPs during NP preparation, and the BSA coating was labelled by electrophilic substitution using 125I. After intravenous administration into rats, energy-discriminant SPECT resolved each radioisotope independently. Imaging revealed different fates for the core and coating, with a fraction of the two radionuclides co-localising in the liver and lungs for long periods of time after administration, suggesting that NPs are stable in these organs. Organ harvesting followed by gamma counting corroborated the SPECT results. The general methodology reported here represents an excellent alternative for visualising the degradation process of multi-labelled NPs in vivo and can be extended to a wide range of engineered NPs.
Collapse
Affiliation(s)
- J Llop
- Radiochemistry and Nuclear Imaging, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Guipúzcoa, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rogers S, Rice KM, Manne NDPK, Shokuhfar T, He K, Selvaraj V, Blough ER. Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans. SAGE Open Med 2015; 3:2050312115575387. [PMID: 26770770 PMCID: PMC4679220 DOI: 10.1177/2050312115575387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/03/2015] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The continual increase in production and disposal of nanomaterials raises concerns regarding the safety of nanoparticles on the environmental and human health. Recent studies suggest that cerium oxide (CeO2) nanoparticles may possess both harmful and beneficial effects on biological processes. The primary objective of this study is to evaluate how exposure to different concentrations (0.17-17.21 µg/mL) of aggregated CeO2 nanoparticles affects indices of whole animal stress and survivability in Caenorhabditis elegans. METHODS Caenorhabditis elegans were exposed to different concentrations of CeO2 nanoparticles and evaluated. RESULTS Our findings demonstrate that chronic exposure of CeO2 nanoparticle aggregates is associated with increased levels of reactive oxygen species and heat shock stress response (HSP-4) in Caenorhabditis elegans, but not mortality. Conversely, CeO2 aggregates promoted strain-dependent decreases in animal fertility, a decline in stress resistance as measured by thermotolerance, and shortened worm length. CONCLUSION The data obtained from this study reveal the sublethal toxic effects of CeO2 nanoparticle aggregates in Caenorhabditis elegans and contribute to our understanding of how exposure to CeO2 may affect the environment.
Collapse
Affiliation(s)
- Steven Rogers
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Nandini DPK Manne
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Tolou Shokuhfar
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| | - Kun He
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
- School of Material Science and Engineering, Shandong University, Jinan, China
| | | | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
- Department of Pharmaceutical Sciences and Research, Marshall University, Huntington, WV, USA
| |
Collapse
|
9
|
Hoover MD, Myers DS, Cash LJ, Guilmette RA, Kreyling WG, Oberdörster G, Smith R, Cassata JR, Boecker BB, Grissom MP. Application of an informatics-based decision-making framework and process to the assessment of radiation safety in nanotechnology. HEALTH PHYSICS 2015; 108:179-194. [PMID: 25551501 DOI: 10.1097/hp.0000000000000250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The National Council on Radiation Protection and Measurements (NCRP) established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between ∼1 and 100 nm, where unique phenomena enable novel applications. While the full report is in preparation, this paper presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.
Collapse
Affiliation(s)
- Mark D Hoover
- *National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505-2888; †Livermore, CA 94550; ‡Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545; §Ray Guilmette & Associates, LLC, Perry, ME 04667; **Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, SE, Albuquerque, NM 87108; ††Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; ‡‡Department of Environmental Medicine, University of Rochester, 575 Elmwood Avenue, Rochester, NY 14627; §§Public Health England-Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, United Kingdom; ***National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814; †††MPG-HP, Inc., 8068 Citricado Lane, Riverside, CA 92508-8720
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Soltani F, Samani AB, Sadeghi M, Arani SS, Yavari K. Production of cerium-141 using ceria and nanoceria powder: a potential radioisotope for simultaneous therapeutic and diagnostic applications. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3335-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Peng L, He X, Zhang P, Zhang J, Li Y, Zhang J, Ma Y, Ding Y, Wu Z, Chai Z, Zhang Z. Comparative pulmonary toxicity of two ceria nanoparticles with the same primary size. Int J Mol Sci 2014; 15:6072-85. [PMID: 24727375 PMCID: PMC4013616 DOI: 10.3390/ijms15046072] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 11/30/2022] Open
Abstract
Ceria nanoparticles (nano-ceria) have recently gained a wide range of applications, which might pose unwanted risks to both the environment and human health. The greatest potential for the environmental discharge of nano-ceria appears to be in their use as a diesel fuel additive. The present study was designed to explore the pulmonary toxicity of nano-ceria in mice after a single exposure via intratracheal instillation. Two types of nano-ceria with the same distribution of a primary size (3-5 nm), but different redox activity, were used: Ceria-p, synthesized by a precipitation route, and Ceria-h, synthesized by a hydrothermal route. Both Ceria-p and Ceria-h induced oxidative stress, inflammatory responses and cytotoxicity in mice, but their toxicological profiles were quite different. The mean size of Ceria-p agglomerates was much smaller compared to Ceria-h, thereby causing a more potent acute inflammation, due to their higher number concentration of agglomerates and higher deposition rate in the deep lung. Ceria-h had a higher reactivity to catalyzing the generation of reactive oxygen species (ROS), and caused two waves of lung injury: bronchoalveolar lavage (BAL) inflammation and cytotoxicity in the early stage and redox-activity-evoked lipid peroxidation and pro-inflammation in the latter stage. Therefore, the size distribution of ceria-containing agglomerates in the exhaust, as well as their surface chemistry are essential characteristics to assess the potential risks of using nano-ceria as a fuel additive.
Collapse
Affiliation(s)
- Lu Peng
- School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Xiao He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Peng Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuanyuan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Junzhe Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yuhui Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yayun Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhenqiang Wu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiyong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Sun M, Sundaresan G, Jose P, Yang L, Hoffman D, Lamichhane N, Zweit J. Highly stable intrinsically radiolabeled indium-111 quantum dots with multidentate zwitterionic surface coating: dual modality tool for biological imaging. J Mater Chem B 2014; 2:4456-4466. [DOI: 10.1039/c4tb00296b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly stable bimodal indium(111) radiolabeled indium QDs were synthesized for in vivo SPECT/fluorescence imaging.
Collapse
Affiliation(s)
- Minghao Sun
- Center for Molecular Imaging
- Department of Radiology
- Virginia Commonwealth University
- Richmond, USA
| | | | - Purnima Jose
- Center for Molecular Imaging
- Department of Radiology
- Virginia Commonwealth University
- Richmond, USA
| | - Likun Yang
- Center for Molecular Imaging
- Department of Radiology
- Virginia Commonwealth University
- Richmond, USA
| | - David Hoffman
- Center for Molecular Imaging
- Department of Radiology
- Virginia Commonwealth University
- Richmond, USA
| | - Narottam Lamichhane
- Center for Molecular Imaging
- Department of Radiology
- Virginia Commonwealth University
- Richmond, USA
| | - Jamal Zweit
- Center for Molecular Imaging
- Department of Radiology
- Virginia Commonwealth University
- Richmond, USA
| |
Collapse
|
13
|
Bakht MK, Hosseini V, Honarpisheh H. Radiolabeled nanoceria probes may reduce oxidative damages and risk of cancer: A hypothesis for radioisotope-based imaging procedures. Med Hypotheses 2013; 81:1164-8. [DOI: 10.1016/j.mehy.2013.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 11/27/2022]
|
14
|
Ould-Moussa N, Safi M, Guedeau-Boudeville MA, Montero D, Conjeaud H, Berret JF. In vitro toxicity of nanoceria: effect of coating and stability in biofluids. Nanotoxicology 2013; 8:799-811. [PMID: 23914740 DOI: 10.3109/17435390.2013.831501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Due to the increasing use of nanometric cerium oxide in applications, concerns about the toxicity of these particles have been raised and have resulted in a large number of studies. We report here on the interactions between 7 nm anionically charged cerium oxide particles and living mammalian cells. By a modification of the particle coating including low-molecular weight ligands and polymers, two generic behaviours are compared: particles coated with citrate ions that precipitate in biofluids and particles coated with poly(acrylic acid) that are stable and remain nanometric. We find that nanoceria covered with both coating agents are taken up by mouse fibroblasts and localized into membrane-bound compartments. However, flow cytometry and electron microscopy reveal that as a result of their precipitation, citrate-coated particles interact more strongly with cells. At cerium concentration above 1 mM, only citrate-coated nanoceria (and not particles coated with poly(acrylic acid)) display toxicity and moderate genotoxicity. The results demonstrate that the control of the surface chemistry of the particles and its ability to prevent aggregation can affect the toxicity of nanomaterials.
Collapse
Affiliation(s)
- Nawel Ould-Moussa
- Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet , Paris , France
| | | | | | | | | | | |
Collapse
|
15
|
Yang L, Sundaresan G, Sun M, Jose P, Hoffman D, McDonagh PR, Lamichhane N, Cutler CS, Perez JM, Zweit J. Intrinsically radiolabeled multifunctional cerium oxide nanoparticles for in vivo studies. J Mater Chem B 2013; 1:1421-1431. [DOI: 10.1039/c2tb00404f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Abbas K, Simonelli F, Holzwarth U, Cydzik I, Bulgheroni A, Gibson N, Kozempel J. Feasibility study of production of radioactive carbon black or carbon nanotubes in cyclotron facilities for nanobioscience applications. Appl Radiat Isot 2012; 73:44-8. [PMID: 23274215 DOI: 10.1016/j.apradiso.2012.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/29/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Abstract
A feasibility study regarding the production of radioactive carbon black and nanotubes has been performed by proton beam irradiation. Experimental and theoretical excitation functions of the nuclear reaction (nat)C(p,x)(7)Be in the proton energy range 24-38 MeV are reported, with an acceptable agreement. We have demonstrated that sufficient activities of (7)Be radioisotope can be produced in carbon black and nanotube that would facilitate studies of their possible impact on human and environment.
Collapse
Affiliation(s)
- K Abbas
- Institute for Transuranium Elements, Joint Research Centre, European Commission, Ispra, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zänker H, Schierz A. Engineered nanoparticles and their identification among natural nanoparticles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:107-132. [PMID: 22482788 DOI: 10.1146/annurev-anchem-062011-143130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The more nanotechnology develops, the more likely the release of engineered nanoparticles into the environment becomes. Due to a huge excess of natural nanoparticles, the identification and quantification of engineered nanoparticles pose a big challenge to analysts. Moreover, identification in a qualitative sense and quantification by mass concentration alone are not sufficient, because the potential environmental hazard arising from engineered nanoparticles is controlled by many other properties of the particles. We discuss the most important methods of fractionation and detection of both natural and engineered nanoparticles, with a focus on the chemical nature of the particles, particle concentration, and particle size. Analyses should not rely on only one method; instead, several complementary methods should, if possible, be used. Coupled techniques should be further developed and increasingly applied. Dedicated techniques that are tailored to the search for a particular sort of engineered nanoparticles are more promising than universal approaches that search for any engineered nanoparticles.
Collapse
Affiliation(s)
- H Zänker
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany.
| | | |
Collapse
|
18
|
Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne NDPK, Katta A, Addagarla HS, Rice KM, Blough ER. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. Int J Nanomedicine 2011; 6:2327-35. [PMID: 22072870 PMCID: PMC3205129 DOI: 10.2147/ijn.s25119] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cerium oxide (CeO(2)) nanoparticles have been posited to have both beneficial and toxic effects on biological systems. Herein, we examine if a single intratracheal instillation of CeO(2) nanoparticles is associated with systemic toxicity in male Sprague-Dawley rats. METHODS AND RESULTS Compared with control animals, CeO(2) nanoparticle exposure was associated with increased liver ceria levels, elevations in serum alanine transaminase levels, reduced albumin levels, a diminished sodium-potassium ratio, and decreased serum triglyceride levels (P < 0.05). Consistent with these data, rats exposed to CeO(2) nanoparticles also exhibited reductions in liver weight (P < 0.05) and dose-dependent hydropic degeneration, hepatocyte enlargement, sinusoidal dilatation, and accumulation of granular material. No histopathological alterations were observed in the kidney, spleen, and heart. Analysis of serum biomarkers suggested an elevation of acute phase reactants and markers of hepatocyte injury in the rats exposed to CeO(2) nanoparticles. CONCLUSION Taken together, these data suggest that intratracheal instillation of CeO(2) nanoparticles can result in liver damage.
Collapse
Affiliation(s)
- Siva K Nalabotu
- Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C Edwards School of Medicine, Huntington, WV 25755-1090, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gibson N, Holzwarth U, Abbas K, Simonelli F, Kozempel J, Cydzik I, Cotogno G, Bulgheroni A, Gilliland D, Ponti J, Franchini F, Marmorato P, Stamm H, Kreyling W, Wenk A, Semmler-Behnke M, Buono S, Maciocco L, Burgio N. Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Arch Toxicol 2011; 85:751-73. [DOI: 10.1007/s00204-011-0701-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 03/23/2011] [Indexed: 12/28/2022]
|