Zhang F, Zeng Z. Multiple ψ -Type Stability and Its Robustness for Recurrent Neural Networks With Time-Varying Delays.
IEEE TRANSACTIONS ON CYBERNETICS 2019;
49:1803-1815. [PMID:
29993797 DOI:
10.1109/tcyb.2018.2813979]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, the ψ -type stability and robustness of recurrent neural networks are investigated by using the differential inequality. By utilizing ψ -type functions combined with the inequality techniques, some sufficient conditions ensuring ψ -type stability and robustness are derived for linear neural networks with time-varying delays. Then, by choosing appropriate Lipschitz coefficient in subregion, some algebraic criteria of the multiple ψ -type stability and robust boundedness are established for the delayed neural networks with time-varying delays. For special cases, several criteria are also presented by selecting parameters with easy implementation. The derived results cover both ψ -type mono-stability and multiple ψ -type stability. In addition, these theoretical results contain exponential stability, polynomial stability, and μ -stability, and they also complement and extend some previous results. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed criteria.
Collapse