1
|
Kuscu M, Ramezani H, Dinc E, Akhavan S, Akan OB. Fabrication and microfluidic analysis of graphene-based molecular communication receiver for Internet of Nano Things (IoNT). Sci Rep 2021; 11:19600. [PMID: 34599208 PMCID: PMC8486847 DOI: 10.1038/s41598-021-98609-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Bio-inspired molecular communications (MC), where molecules are used to transfer information, is the most promising technique to realise the Internet of Nano Things (IoNT), thanks to its inherent biocompatibility, energy-efficiency, and reliability in physiologically-relevant environments. Despite a substantial body of theoretical work concerning MC, the lack of practical micro/nanoscale MC devices and MC testbeds has led researchers to make overly simplifying assumptions about the implications of the channel conditions and the physical architectures of the practical transceivers in developing theoretical models and devising communication methods for MC. On the other hand, MC imposes unique challenges resulting from the highly complex, nonlinear, time-varying channel properties that cannot be always tackled by conventional information and communication tools and technologies (ICT). As a result, the reliability of the existing MC methods, which are mostly adopted from electromagnetic communications and not validated with practical testbeds, is highly questionable. As the first step to remove this discrepancy, in this study, we report on the fabrication of a nanoscale MC receiver based on graphene field-effect transistor biosensors. We perform its ICT characterisation in a custom-designed microfluidic MC system with the information encoded into the concentration of single-stranded DNA molecules. This experimental platform is the first practical implementation of a micro/nanoscale MC system with nanoscale MC receivers, and can serve as a testbed for developing realistic MC methods and IoNT applications.
Collapse
Affiliation(s)
- Murat Kuscu
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
- Cambridge Graphene Centre (CGC), Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, 34450, Turkey.
| | - Hamideh Ramezani
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Cambridge Graphene Centre (CGC), Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Ergin Dinc
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shahab Akhavan
- Cambridge Graphene Centre (CGC), Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Institute for Materials Discovery, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Ozgur B Akan
- Internet of Everything (IoE) Group, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, 34450, Turkey
| |
Collapse
|
2
|
Lotter S, Schafer M, Zeitler J, Schober R. Saturating Receiver and Receptor Competition in Synaptic DMC: Deterministic and Statistical Signal Models. IEEE Trans Nanobioscience 2021; 20:464-479. [PMID: 34166196 DOI: 10.1109/tnb.2021.3092279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic communication is based on a biological Molecular Communication (MC) system which may serve as a blueprint for the design of synthetic MC systems. However, the physical modeling of synaptic MC is complicated by the possible saturation of the molecular receiver caused by the competition of neurotransmitters (NTs) for postsynaptic receptors. Receiver saturation renders the system behavior nonlinear in the number of released NTs and is commonly neglected in existing analytical models. Furthermore, due to the ligands' competition for receptors (and vice versa), the individual binding events at the molecular receiver are in general not statistically independent and the commonly used binomial model for the statistics of the received signal does not apply. Hence, in this work, we propose a novel deterministic model for receptor saturation in terms of a state-space description based on an eigenfunction expansion of Fick's diffusion equation. The presented solution is numerically stable and computationally efficient. Employing the proposed deterministic model, we show that saturation at the molecular receiver effectively reduces the peak-value of the expected received signal and accelerates the clearance of NTs as compared to the case when receptor occupancy is neglected. We further derive a statistical model for the received signal in terms of the hypergeometric distribution which accounts for the competition of NTs for receptors and the competition of receptors for NTs. The proposed statistical model reveals how the signal statistics are shaped by the number of released NTs, the number of receptors, and the binding kinetics of the receptors, respectively, in the presence of competition. In particular, we show that the impact of these parameters on the signal variance is qualitatively different depending on the relative numbers of NTs and receptors. Finally, the accuracy of the proposed deterministic and statistical models is verified by particle-based computer simulations.
Collapse
|
3
|
Martins DP, Barros MT, Balasubramaniam S. Quality and Capacity Analysis of Molecular Communications in Bacterial Synthetic Logic Circuits. IEEE Trans Nanobioscience 2019; 18:628-639. [PMID: 31352349 DOI: 10.1109/tnb.2019.2930960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Synthetic logic circuits have been proposed as potential solutions for theranostics of biotechnological problems. One proposed model is the engineering of bacteria cells to create logic gates, and the communication between the bacteria populations will enable the circuit operation. In this paper, we analyze the quality of bacteria-based synthetic logic circuit through molecular communications that represent communication along a bus between three gates. In the bacteria-based synthetic logic circuit, the system receives environmental signals as molecular inputs and will process this information through a cascade of synthetic logic gates and free diffusion channels. We analyze the performance of this circuit by evaluating its quality and its relationship to the channel capacity of the molecular communications links that interconnect the bacteria populations. Our results show the effect of the molecular environmental delay and molecular amplitude differences over both the channel capacity and circuit quality. Furthermore, based on these metrics, we also obtain an optimum region for the circuit operation resulting in an accuracy of 80% for specific conditions. These results show that the performance of synthetic biology circuits can be evaluated through molecular communications, and lays the groundwork for combined systems that can contribute to future biomedical and biotechnology applications.
Collapse
|