1
|
Almas S, Wahid F, Ali S, Alkhyyat A, Ullah K, Khan J, Lee Y. Visual impairment prevention by early detection of diabetic retinopathy based on stacked auto-encoder. Sci Rep 2025; 15:2554. [PMID: 39833312 PMCID: PMC11747016 DOI: 10.1038/s41598-025-85752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Diabetic retinopathy (DR) presents a significant concern among diabetic patients, often leading to vision impairment or blindness if left untreated. Traditional diagnosis methods are prone to human error, necessitating accurate alternatives. While various computer-aided systems have been developed to assist in DR detection, there remains a need for accurate and efficient methods to classify its stages. In this study, we propose a novel approach utilizing enhanced stacked auto-encoders for the detection and classification of DR stages. The classification is performed across one healthy (normal) stage and four DR stages: mild, moderate, severe, and proliferative. Unlike traditional CNN approaches, our method offers improved reliability by reducing time complexity, minimizing errors, and enhancing noise reduction. Leveraging a comprehensive dataset from KAGGLE containing 35,126 retinal fundus images representing one healthy (normal) stage and four DR stages, our proposed model demonstrates superior accuracy compared to existing deep learning algorithms. Data augmentation techniques address class imbalance, while SAEs facilitate accurate classification through layer-wise unsupervised pre-training and supervised fine-tuning. We evaluate our model's performance using rigorous quantitative measures, including accuracy, recall, precision, and F1-score, highlighting its effectiveness in early disease diagnosis and prevention of blindness. Experimental results across different training/testing ratios (50:50, 60:40, 70:30, and 75:25) showcase the model's robustness. The highest accuracy achieved during training was 93%, while testing accuracy reached 88% on a training/testing ratio of 75:25. Comparative analysis underscores the model's superiority over existing methods, positioning it as a promising tool for early-stage DR detection and blindness prevention.
Collapse
Affiliation(s)
- Shagufta Almas
- Department of Information Technology, The University of Haripur, Haripur, 22620, Pakistan
| | - Fazli Wahid
- Department of Information Technology, The University of Haripur, Haripur, 22620, Pakistan
- Collage of Science and Engineering, School of Computing, University of Derby, Derby, DE22 3AW, UK
| | - Sikandar Ali
- Department of Information Technology, The University of Haripur, Haripur, 22620, Pakistan
| | - Ahmed Alkhyyat
- College of Technical Engineering, The Islamic University, Najaf, 54001, Iraq
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, 58001, Al Diwaniyah, Iraq
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Babylon, 51002, Babylon, Iraq
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, 22620, Pakistan
| | - Jawad Khan
- School of Computing, Gachon University, Seongnam, 13120, Republic of Korea
| | - Youngmoon Lee
- Department of Robotics, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
2
|
Charan ES, Sharma A, Sandhu H, Garg P. FGFR1Pred: an artificial intelligence-based model for predicting fibroblast growth factor receptor 1 inhibitor. Mol Divers 2024; 28:2065-2076. [PMID: 37566198 DOI: 10.1007/s11030-023-10714-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of cell surface receptors that bind to fibroblast growth factor (FGF) and mediate various cellular functions (translocating proteins, tissue repair, cell proliferation, development, and differentiation) through complex signaling pathways. The FGFR1 growth receptor is essential in the pathogenesis of numerous malignancies, including but not limited to breast cancer, bladder cancer, hepatocellular carcinoma (HCC), and cholangiocarcinoma. The higher levels of FGFR1 expression on the surface of cancer cells cause overly active signaling, which leads to rapid cell proliferation, resulting in a high spread of cancer cells. The kinases that FGFR1 activates migrate across the cell nucleus, activating genes and kinase proteins necessary for the growth and survival of cancerous cells. Therefore, FGFR1 targeting shows therapeutic promise in some diseases, including cancer. Inhibitors of FGFR1s are being developed and studied for their potential to block aberrant FGFR1 signaling and inhibit cancer growth. Since the discovery of new FGFR1 inhibitors in the laboratory is difficult, expensive, time-consuming, and labor-intensive, only a small number of FGFR1 inhibitors have been approved by the FDA for use in the treatment of cancer. To accelerate drug discovery by efficiently exploring the vast chemical space, and identifying potential candidates with higher accuracy and reduced cost, we developed artificial intelligence (AI)-based prediction models for FGFR1 inhibitors using a dataset of 2356 chemical compounds. Four machine learning (ML) algorithms (SVM, RF, k-NN, and ANN) were used to train different prediction models based on molecular descriptors (1D and 2D, with and without molecular fingerprints). Among all trained models, the random forest (RF)-based prediction model achieved the highest accuracy on the training (98.9%), test (89.8%), and external test (90.3%) datasets. The developed inhibitor prediction model (FGFR1Pred) provides a valuable tool for identifying potential FGFR1 inhibitors, expediting the drug discovery process and ultimately facilitating the development of new therapeutics. The model is made available at https://github.com/PGlab-NIPER/FGFR1Pred.git.
Collapse
Affiliation(s)
- Ekambarapu Sree Charan
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, Punjab, 160 062, India
| | - Anju Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, Punjab, 160 062, India
| | - Hardeep Sandhu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, Punjab, 160 062, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, Punjab, 160 062, India.
| |
Collapse
|
3
|
Driban M, Yan A, Selvam A, Ong J, Vupparaboina KK, Chhablani J. Artificial intelligence in chorioretinal pathology through fundoscopy: a comprehensive review. Int J Retina Vitreous 2024; 10:36. [PMID: 38654344 PMCID: PMC11036694 DOI: 10.1186/s40942-024-00554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Applications for artificial intelligence (AI) in ophthalmology are continually evolving. Fundoscopy is one of the oldest ocular imaging techniques but remains a mainstay in posterior segment imaging due to its prevalence, ease of use, and ongoing technological advancement. AI has been leveraged for fundoscopy to accomplish core tasks including segmentation, classification, and prediction. MAIN BODY In this article we provide a review of AI in fundoscopy applied to representative chorioretinal pathologies, including diabetic retinopathy and age-related macular degeneration, among others. We conclude with a discussion of future directions and current limitations. SHORT CONCLUSION As AI evolves, it will become increasingly essential for the modern ophthalmologist to understand its applications and limitations to improve patient outcomes and continue to innovate.
Collapse
Affiliation(s)
- Matthew Driban
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Audrey Yan
- Department of Medicine, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Amrish Selvam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, USA
| | | | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Selvachandran G, Quek SG, Paramesran R, Ding W, Son LH. Developments in the detection of diabetic retinopathy: a state-of-the-art review of computer-aided diagnosis and machine learning methods. Artif Intell Rev 2023; 56:915-964. [PMID: 35498558 PMCID: PMC9038999 DOI: 10.1007/s10462-022-10185-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 02/02/2023]
Abstract
The exponential increase in the number of diabetics around the world has led to an equally large increase in the number of diabetic retinopathy (DR) cases which is one of the major complications caused by diabetes. Left unattended, DR worsens the vision and would lead to partial or complete blindness. As the number of diabetics continue to increase exponentially in the coming years, the number of qualified ophthalmologists need to increase in tandem in order to meet the demand for screening of the growing number of diabetic patients. This makes it pertinent to develop ways to automate the detection process of DR. A computer aided diagnosis system has the potential to significantly reduce the burden currently placed on the ophthalmologists. Hence, this review paper is presented with the aim of summarizing, classifying, and analyzing all the recent development on automated DR detection using fundus images from 2015 up to this date. Such work offers an unprecedentedly thorough review of all the recent works on DR, which will potentially increase the understanding of all the recent studies on automated DR detection, particularly on those that deploys machine learning algorithms. Firstly, in this paper, a comprehensive state-of-the-art review of the methods that have been introduced in the detection of DR is presented, with a focus on machine learning models such as convolutional neural networks (CNN) and artificial neural networks (ANN) and various hybrid models. Each AI will then be classified according to its type (e.g. CNN, ANN, SVM), its specific task(s) in performing DR detection. In particular, the models that deploy CNN will be further analyzed and classified according to some important properties of the respective CNN architectures of each model. A total of 150 research articles related to the aforementioned areas that were published in the recent 5 years have been utilized in this review to provide a comprehensive overview of the latest developments in the detection of DR. Supplementary Information The online version contains supplementary material available at 10.1007/s10462-022-10185-6.
Collapse
Affiliation(s)
- Ganeshsree Selvachandran
- Department of Actuarial Science and Applied Statistics, Faculty of Business & Management, UCSI University, Jalan Menara Gading, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Shio Gai Quek
- Department of Actuarial Science and Applied Statistics, Faculty of Business & Management, UCSI University, Jalan Menara Gading, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Raveendran Paramesran
- Institute of Computer Science and Digital Innovation, UCSI University, Jalan Menara Gading, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Weiping Ding
- School of Information Science and Technology, Nantong University, Nantong, 226019 People’s Republic of China
| | - Le Hoang Son
- VNU Information Technology Institute, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
5
|
Kundu S, Karale V, Ghorai G, Sarkar G, Ghosh S, Dhara AK. Nested U-Net for Segmentation of Red Lesions in Retinal Fundus Images and Sub-image Classification for Removal of False Positives. J Digit Imaging 2022; 35:1111-1119. [PMID: 35474556 PMCID: PMC9582103 DOI: 10.1007/s10278-022-00629-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/21/2022] [Accepted: 04/03/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetic retinopathy is a pathological change of the retina that occurs for long-term diabetes. The patients become symptomatic in advanced stages of diabetic retinopathy resulting in severe non-proliferative diabetic retinopathy or proliferative diabetic retinopathy stages. There is a need of an automated screening tool for the early detection and treatment of patients with diabetic retinopathy. This paper focuses on the segmentation of red lesions using nested U-Net Zhou et al. (Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer, 2018) followed by removal of false positives based on the sub-image classification method. Different sizes of sub-images were studied for the reduction in false positives in the sub-image classification method. The network could capture semantic features and fine details due to dense convolutional blocks connected via skip connections in between down sampling and up sampling paths. False-negative candidates were very few and the sub-image classification network effectively reduced the falsely detected candidates. The proposed framework achieves a sensitivity of [Formula: see text], precision of [Formula: see text], and F1-Score of [Formula: see text] for the DIARETDB1 data set Kalviainen and Uusutalo (Medical Image Understanding and Analysis, Citeseer, 2007). It outperforms the state-of-the-art networks such as U-Net Ronneberger et al. (International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015) and attention U-Net Oktay et al. (Attention u-net: Learning where to look for the pancreas, 2018).
Collapse
Affiliation(s)
- Swagata Kundu
- Electrical Engineering Department, National Institute of Technology Durgapur, Durgapur, 713209 India
| | - Vikrant Karale
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Goutam Ghorai
- Department of Electrical Engineering, Jadavpur University, Kolkata, 700032 India
| | - Gautam Sarkar
- Department of Electrical Engineering, Jadavpur University, Kolkata, 700032 India
| | - Sambuddha Ghosh
- Department of Ophthalmology, Calcutta National Medical College and Hospital, Kolkata, 700014 India
| | - Ashis Kumar Dhara
- Electrical Engineering Department, National Institute of Technology Durgapur, Durgapur, 713209 India
| |
Collapse
|
6
|
Dubey S, Dixit M. Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:14471-14525. [PMID: 36185322 PMCID: PMC9510498 DOI: 10.1007/s11042-022-13841-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a long-term condition in which the pancreas quits producing insulin or the body's insulin isn't utilised properly. One of the signs of diabetes is Diabetic Retinopathy. Diabetic retinopathy is the most prevalent type of diabetes, if remains unaddressed, diabetic retinopathy can affect all diabetics and become very serious, raising the chances of blindness. It is a chronic systemic condition that affects up to 80% of patients for more than ten years. Many researchers believe that if diabetes individuals are diagnosed early enough, they can be rescued from the condition in 90% of cases. Diabetes damages the capillaries, which are microscopic blood vessels in the retina. On images, blood vessel damage is usually noticeable. Therefore, in this study, several traditional, as well as deep learning-based approaches, are reviewed for the classification and detection of this particular diabetic-based eye disease known as diabetic retinopathy, and also the advantage of one approach over the other is also described. Along with the approaches, the dataset and the evaluation metrics useful for DR detection and classification are also discussed. The main finding of this study is to aware researchers about the different challenges occurs while detecting diabetic retinopathy using computer vision, deep learning techniques. Therefore, a purpose of this review paper is to sum up all the major aspects while detecting DR like lesion identification, classification and segmentation, security attacks on the deep learning models, proper categorization of datasets and evaluation metrics. As deep learning models are quite expensive and more prone to security attacks thus, in future it is advisable to develop a refined, reliable and robust model which overcomes all these aspects which are commonly found while designing deep learning models.
Collapse
Affiliation(s)
- Shradha Dubey
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| | - Manish Dixit
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| |
Collapse
|
7
|
Construction of a Prediction Model for the Mortality of Elderly Patients with Diabetic Nephropathy. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5724050. [PMID: 36133909 PMCID: PMC9484980 DOI: 10.1155/2022/5724050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
To construct a prediction model for all-cause mortality in elderly diabetic nephropathy (DN) patients, in this cohort study, the data of 511 DN patients aged ≥65 years were collected and the participants were divided into the training set (n = 358) and the testing set (n = 153). The median survival time of all participants was 2 years. The data in the training set were grouped into the survival group (n = 203) or the death group (n = 155). Variables with P ≤ 0.1 between the two groups were selected as preliminary predictors and involved into the multivariable logistic regression model and the covariables were gradually adjusted. The receiver operator characteristic (ROC), Kolmogorov-Smirnov (KS), and calibration curves were plotted for evaluating the predictive performance of the model. Internal validation of the performance of the model was verified in the testing set. The predictive values of the model were also conducted in terms of people with different genders and ages or accompanied with chronic kidney disease (CKD) or cardiovascular diseases (CVD), respectively. In total, 216 (42.27%) elderly DN patients were dead within 2 years. The prediction model for the 2-year mortality of elderly patients with DN was established based on length of stay (LOS), temperature, heart rate, peripheral oxygen saturation (SpO2), serum creatinine (Scr), red cell distribution width (RDW), the simplified acute physiology score-II (SAPS-II), hyperlipidemia, and the Chronic Kidney Disease Epidemiology Collaboration equation for estimated glomerular filtration rate (eGFR-CKD-EPI). The AUC of the model was 0.78 (95% CI: 0.73–0.83) in the training set and 0.72 (95% CI: 0.63–0.80) in the testing set. The AUC of the model was 0.78 (95% CI: 0.65–0.91) in females and 0.78 (95%CI: 0.68–0.88) in patients ≤75 years. The AUC of the model was 0.74 (95% CI: 0.64–0.84) in patients accompanied with CKD. The model had good predictive value for the mortality of elderly patients with DN within 2 years. In addition, the model showed good predictive values for female DN patients, DN patients ≤75 years, and DN patients accompanied with CKD.
Collapse
|
8
|
Özbay E. An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Deng L, Liu S, Wang X, Zhao G, Xu J. Particle Swarm Optimization and Salp Swarm Algorithm for the Segmentation of Diabetic Retinal Blood Vessel Images. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1936482. [PMID: 36052032 PMCID: PMC9427232 DOI: 10.1155/2022/1936482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
In recent years, the incidence of diabetes has been increasing year by year. Since most of the fundus lesions are located near blood vessels, the image information is complex, and the end vessels are difficult to identify. So, a new segmentation method of diabetic retinal vessel images based on particle swarm optimization and salp swarm algorithm is proposed. This paper uses a Gaussian filter to enhance the main blood vessels, and a top-bot hat transform is used to strengthen the end vessels. The preprocessing process is completed by combining and reconstructing the two images through a normalization operation. The improved particle swarm optimization and salp swarm algorithms perform multi-threshold segmentation on the preprocessed vessel images. The best fit value, Structural Similarity Index Measure, Peak Signal to Noise Rati, feature similarity index measure, sensitivity, accuracy, regional consistency, Dice coefficient, Jaccard similarity, and Shannon entropy are selected for comprehensive evaluation and analysis. The results showed that this paper's improved particle swarm-salp swarm algorithm for segmenting diabetic retinal blood vessel images is more efficient, and the threshold is better. The vascular segmentation method in this paper is applied in medical image processing, which improves the accuracy of medical image processing and reduces the computational effort.
Collapse
Affiliation(s)
- Liwei Deng
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin 150080, China
| | - Shanshan Liu
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin 150080, China
| | - Xiaofei Wang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Guofu Zhao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Machinery Sciences, Jiamusi 154003, China
| | - Jiazhong Xu
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin 150080, China
- Key Laboratory of Advanced Manufacturing and Intelligent Technology Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
10
|
Object Detection in Medical Images Based on Hierarchical Transformer and Mask Mechanism. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5863782. [PMID: 35965770 PMCID: PMC9371842 DOI: 10.1155/2022/5863782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2023]
Abstract
The object detection task in the medical field is challenging in terms of classification and regression. Due to its crucial applications in computer-aided diagnosis and computer-aided detection techniques, an increasing number of researchers are transferring the object detection techniques to the medical field. However, in existing work on object detection, researchers do not consider the low resolution of medical images, the high amount of noise, and the small size of the objects to be detected. Based on this, this paper proposes a new algorithmic model called the MS Transformer, where a self-supervised learning approach is used to perform a random mask on the input image to reconstruct the input features, learn a richer feature vector, and filter out excessive noise. To focus the model on the small objects that are being detected, the hierarchical transformer model is introduced in this paper, and a sliding window with a local self-attention mechanism is used to give a higher attention score to the small objects to be detected. Finally, a single-stage object detection framework is used to predict the sequence of sets at the location of the bounding box and the class of objects to be detected. On the DeepLesion and BCDD benchmark dataset, the model proposed in this paper achieves better performance improvement on multiple evaluation metric categories.
Collapse
|
11
|
Mishra A, Singh L, Pandey M, Lakra S. Image based early detection of diabetic retinopathy: A systematic review on Artificial Intelligence (AI) based recent trends and approaches. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-220772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diabetic Retinopathy (DR) is a disease that damages the retina of the human eye due to diabetic complications, resulting in a loss of vision. Blindness may be avoided If the DR disease is detected at an early stage. Unfortunately, DR is irreversible process, however, early detection and treatment of DR can significantly reduce the risk of vision loss. The manual diagnosis done by ophthalmologists on DR retina fundus images is time consuming, and error prone process. Nowadays, machine learning and deep learning have become one of the most effective approaches, which have even surpassed the human performance as well as performance of traditional image processing-based algorithms and other computer aided diagnosis systems in the analysis and classification of medical images. This paper addressed and evaluated the various recent state-of-the-art methodologies that have been used for detection and classification of Diabetic Retinopathy disease using machine learning and deep learning approaches in the past decade. Furthermore, this study also provides the authors observation and performance evaluation of available research using several parameters, such as accuracy, disease status, and sensitivity. Finally, we conclude with limitations, remedies, and future directions in DR detection. In addition, various challenging issues that need further study are also discussed.
Collapse
Affiliation(s)
- Anju Mishra
- Manav Rachna University, Faridabad, Haryana, India
| | - Laxman Singh
- Noida Institute of Engineering and Technology, Greater Noida, U.P, India
| | | | - Sachin Lakra
- Manav Rachna University, Faridabad, Haryana, India
| |
Collapse
|
12
|
Derwin DJ, Shan BP, Singh OJ. Hybrid multi-kernel SVM algorithm for detection of microaneurysm in color fundus images. Med Biol Eng Comput 2022; 60:1377-1390. [PMID: 35325369 DOI: 10.1007/s11517-022-02534-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/04/2022] [Indexed: 10/18/2022]
Abstract
Diabetic retinopathy (DR) is a chronic disease that may cause vision loss in diabetic patients. Microaneurysms which are characterized by small red spots on the retina due to fluid or blood leakage from the weak capillary wall often occur during the early stage of DR, making screening at this stage is essential. In this paper, an automatic screening system for early detection of DR in retinal images is developed using a combined shape and texture features. Due to minimum number of hand-crafted features, the computational burden is much reduced. The proposed hybrid multi-kernel support vector machine classifier is constructed by learning a kernel model formed as a combination of the base kernels. This approach outperforms the recent deep learning techniques in terms of the evaluation metrics. The efficiency of the proposed scheme is experimentally validated on three public datasets - Retinopathy Online Challenge, DIARETdB1, MESSIDOR, and AGAR300 (developed for this study). Studies reveal that the proposed model produced the best results of 0.503 in ROC dataset, 0.481 in DIARETdB1, and 0.464 in the MESSIDOR dataset in terms of FROC score. The AGAR300 database outperforms the existing MA detection algorithm in terms of FROC, AUC, F1 score, precision, sensitivity, and specificity which guarantees the robustness of this system.
Collapse
Affiliation(s)
- D Jeba Derwin
- SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu, India.
| | | | - O Jeba Singh
- Arunachala College of Engineering for Women, Kanyakumari, Tamil Nadu, India
| |
Collapse
|
13
|
Shekar S, Satpute N, Gupta A. Review on diabetic retinopathy with deep learning methods. JOURNAL OF MEDICAL IMAGING (BELLINGHAM, WASH.) 2021; 8:060901. [PMID: 34859116 DOI: 10.1117/1.jmi.8.6.060901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022]
Abstract
Purpose: The purpose of our review paper is to examine many existing works of literature presenting the different methods utilized for diabetic retinopathy (DR) recognition employing deep learning (DL) and machine learning (ML) techniques, and also to address the difficulties faced in various datasets used by DR. Approach: DR is a progressive illness and may become a reason for vision loss. Early identification of DR lesions is, therefore, helpful and prevents damage to the retina. However, it is a complex job in view of the fact that it is symptomless earlier, and also ophthalmologists have been needed in traditional approaches. Recently, automated identification of DR-based studies has been stated based on image processing, ML, and DL. We analyze the recent literature and provide a comparative study that also includes the limitations of the literature and future work directions. Results: A relative analysis among the databases used, performance metrics employed, and ML and DL techniques adopted recently in DR detection based on various DR features is presented. Conclusion: Our review paper discusses the methods employed in DR detection along with the technical and clinical challenges that are encountered, which is missing in existing reviews, as well as future scopes to assist researchers in the field of retinal imaging.
Collapse
Affiliation(s)
- Shreya Shekar
- College of Engineering Pune, Department of Electronics and Telecommunication Engineering, Pune, Maharashtra, India
| | - Nitin Satpute
- Aarhus University, Department of Electrical and Computer Engineering, Aarhus, Denmark
| | - Aditya Gupta
- College of Engineering Pune, Department of Electronics and Telecommunication Engineering, Pune, Maharashtra, India
| |
Collapse
|
14
|
A review of diabetic retinopathy: Datasets, approaches, evaluation metrics and future trends. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2021. [DOI: 10.1016/j.jksuci.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Bilal A, Sun G, Mazhar S. Survey on recent developments in automatic detection of diabetic retinopathy. J Fr Ophtalmol 2021; 44:420-440. [PMID: 33526268 DOI: 10.1016/j.jfo.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is a disease facilitated by the rapid spread of diabetes worldwide. DR can blind diabetic individuals. Early detection of DR is essential to restoring vision and providing timely treatment. DR can be detected manually by an ophthalmologist, examining the retinal and fundus images to analyze the macula, morphological changes in blood vessels, hemorrhage, exudates, and/or microaneurysms. This is a time consuming, costly, and challenging task. An automated system can easily perform this function by using artificial intelligence, especially in screening for early DR. Recently, much state-of-the-art research relevant to the identification of DR has been reported. This article describes the current methods of detecting non-proliferative diabetic retinopathy, exudates, hemorrhage, and microaneurysms. In addition, the authors point out future directions in overcoming current challenges in the field of DR research.
Collapse
Affiliation(s)
- A Bilal
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing 100124, China.
| | - G Sun
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing 100124, China
| | - S Mazhar
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing 100124, China
| |
Collapse
|
16
|
Automatic detection of non-perfusion areas in diabetic macular edema from fundus fluorescein angiography for decision making using deep learning. Sci Rep 2020; 10:15138. [PMID: 32934283 PMCID: PMC7492239 DOI: 10.1038/s41598-020-71622-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
Vision loss caused by diabetic macular edema (DME) can be prevented by early detection and laser photocoagulation. As there is no comprehensive detection technique to recognize NPA, we proposed an automatic detection method of NPA on fundus fluorescein angiography (FFA) in DME. The study included 3,014 FFA images of 221 patients with DME. We use 3 convolutional neural networks (CNNs), including DenseNet, ResNet50, and VGG16, to identify non-perfusion regions (NP), microaneurysms, and leakages in FFA images. The NPA was segmented using attention U-net. To validate its performance, we applied our detection algorithm on 249 FFA images in which the NPA areas were manually delineated by 3 ophthalmologists. For DR lesion classification, area under the curve is 0.8855 for NP regions, 0.9782 for microaneurysms, and 0.9765 for leakage classifier. The average precision of NP region overlap ratio is 0.643. NP regions of DME in FFA images are identified based a new automated deep learning algorithm. This study is an in-depth study from computer-aided diagnosis to treatment, and will be the theoretical basis for the application of intelligent guided laser.
Collapse
|
17
|
Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101978] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: A systematic review. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2020. [DOI: 10.1016/j.jksuci.2020.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Stolte S, Fang R. A survey on medical image analysis in diabetic retinopathy. Med Image Anal 2020; 64:101742. [PMID: 32540699 DOI: 10.1016/j.media.2020.101742] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 01/12/2023]
Abstract
Diabetic Retinopathy (DR) represents a highly-prevalent complication of diabetes in which individuals suffer from damage to the blood vessels in the retina. The disease manifests itself through lesion presence, starting with microaneurysms, at the nonproliferative stage before being characterized by neovascularization in the proliferative stage. Retinal specialists strive to detect DR early so that the disease can be treated before substantial, irreversible vision loss occurs. The level of DR severity indicates the extent of treatment necessary - vision loss may be preventable by effective diabetes management in mild (early) stages, rather than subjecting the patient to invasive laser surgery. Using artificial intelligence (AI), highly accurate and efficient systems can be developed to help assist medical professionals in screening and diagnosing DR earlier and without the full resources that are available in specialty clinics. In particular, deep learning facilitates diagnosis earlier and with higher sensitivity and specificity. Such systems make decisions based on minimally handcrafted features and pave the way for personalized therapies. Thus, this survey provides a comprehensive description of the current technology used in each step of DR diagnosis. First, it begins with an introduction to the disease and the current technologies and resources available in this space. It proceeds to discuss the frameworks that different teams have used to detect and classify DR. Ultimately, we conclude that deep learning systems offer revolutionary potential to DR identification and prevention of vision loss.
Collapse
Affiliation(s)
- Skylar Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building JG56 P.O. Box 116131 Gainesville, FL 32611-6131, USA.
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building JG56 P.O. Box 116131 Gainesville, FL 32611-6131, USA.
| |
Collapse
|
20
|
Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning. Graefes Arch Clin Exp Ophthalmol 2020; 258:779-785. [PMID: 31932886 DOI: 10.1007/s00417-019-04575-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To automatically detect and classify the lesions of diabetic retinopathy (DR) in fundus fluorescein angiography (FFA) images using deep learning algorithm through comparing 3 convolutional neural networks (CNNs). METHODS A total of 4067 FFA images from Eye Center at the Second Affiliated Hospital of Zhejiang University School of Medicine were annotated with 4 kinds of lesions of DR, including non-perfusion regions (NP), microaneurysms, leakages, and laser scars. Three CNNs including DenseNet, ResNet50, and VGG16 were trained to achieve multi-label classification, which means the algorithms could identify 4 retinal lesions above at the same time. RESULTS The area under the curve (AUC) of DenseNet reached 0.8703, 0.9435, 0.9647, and 0.9653 for detecting NP, microaneurysms, leakages, and laser scars, respectively. For ResNet50, AUC was 0.8140 for NP, 0.9097 for microaneurysms, 0.9585 for leakages, and 0.9115 for laser scars. And for VGG16, AUC was 0.7125 for NP, 0.5569 for microaneurysms, 0.9177 for leakages, and 0.8537 for laser scars. CONCLUSIONS Experimental results demonstrate that DenseNet is a suitable model to automatically detect and distinguish retinal lesions in the FFA images with multi-label classification, which lies the foundation of automatic analysis for FFA images and comprehensive diagnosis and treatment decision-making for DR.
Collapse
|