Dong T, Zhang Q. Stability and Oscillation Analysis of a Gene Regulatory Network With Multiple Time Delays and Diffusion Rate.
IEEE Trans Nanobioscience 2020;
19:285-298. [PMID:
31944962 DOI:
10.1109/tnb.2020.2964900]
[Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In genetic regulatory networks (GRNs), the diffusion rate of mRNA and protein play a key role in regulatory mechanisms of gene expression, especially in translation and transcription. However, the influence of diffusion rate on oscillatory gene expression is not well understood. In this paper, by considering the diffusion rate of mRNA and protein, a novel GRN is proposed. Then, two basic problems of such network, i.e. stability and oscillation, are solved in detail. Moreover, the properties of oscillation are also investigated. it is found that the total biochemistry reaction time can affect the stability of the positive equilibrium and give rise to the oscillation. The diffusion rate of mRNA and proteins have a major impact on the oscillation properties. Finally, two examples not only verify the theoretical results, but also show that a slight diffusion rate increasing may lead to huge change in oscillatory gene expressions.
Collapse