1
|
Dong H, Lin J, Tao Y, Jia Y, Sun L, Li WJ, Sun H. AI-enhanced biomedical micro/nanorobots in microfluidics. LAB ON A CHIP 2024; 24:1419-1440. [PMID: 38174821 DOI: 10.1039/d3lc00909b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human beings encompass sophisticated microcirculation and microenvironments, incorporating a broad spectrum of microfluidic systems that adopt fundamental roles in orchestrating physiological mechanisms. In vitro recapitulation of human microenvironments based on lab-on-a-chip technology represents a critical paradigm to better understand the intricate mechanisms. Moreover, the advent of micro/nanorobotics provides brand new perspectives and dynamic tools for elucidating the complex process in microfluidics. Currently, artificial intelligence (AI) has endowed micro/nanorobots (MNRs) with unprecedented benefits, such as material synthesis, optimal design, fabrication, and swarm behavior. Using advanced AI algorithms, the motion control, environment perception, and swarm intelligence of MNRs in microfluidics are significantly enhanced. This emerging interdisciplinary research trend holds great potential to propel biomedical research to the forefront and make valuable contributions to human health. Herein, we initially introduce the AI algorithms integral to the development of MNRs. We briefly revisit the components, designs, and fabrication techniques adopted by robots in microfluidics with an emphasis on the application of AI. Then, we review the latest research pertinent to AI-enhanced MNRs, focusing on their motion control, sensing abilities, and intricate collective behavior in microfluidics. Furthermore, we spotlight biomedical domains that are already witnessing or will undergo game-changing evolution based on AI-enhanced MNRs. Finally, we identify the current challenges that hinder the practical use of the pioneering interdisciplinary technology.
Collapse
Affiliation(s)
- Hui Dong
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jiawen Lin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
| | - Yihui Tao
- Department of Automation Control and System Engineering, University of Sheffield, Sheffield, UK
| | - Yuan Jia
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China
| | - Lining Sun
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
- Research Center of Aerospace Mechanism and Control, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
2
|
Shi S, Sharifi N, Chen Y, Yao X. Tension-Relaxation In Vivo Computing Principle for Tumor Sensitization and Targeting. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:9145-9156. [PMID: 33600339 DOI: 10.1109/tcyb.2021.3052731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By modeling the tumor sensitization and targeting (TST) as a natural computational process, we have proposed the framework of nanorobots-assisted in vivo computation. The externally manipulable nanorobots are steered to detect the tumor in the high-risk tissue, which is analogous to the process of searching for the optimal solution by the computing agents in the search space. To overcome the constraint of a nanorobotic platform that can only generate a uniform magnetic field to actuate the nanorobots, we have proposed the weak priority evolution strategy (WP-ES) in our previous works. However, these works do not consider the proportions of the nanorobot control and tracking operations, which are part and parcel of in vivo computation as the control operation aims at searching for the tumor effectively while the tracking mode is used for gathering information about the biological gradient function (BGF). Careful planning about the durations spent in these operations is needed for optimal performance of the TST strategy. To account for this issue, in the current article, we propose a novel computational principle, called the tension-relaxation (T-R) principle, to balance the displacements of nanorobots during each control and tracking cycle. Furthermore, we build three tumor vascular models with different sizes to represent three different targeting regions as the morphology of tumor vasculature determined by the tumor growth process is an important factor affecting TST. We carry out the computational experiments for tumors with three different sizes for several representative landscapes by introducing the T-R principle into the WP-ES-based swarm intelligence algorithms and considering the realistic internal constraints. The experimental outcomes demonstrate the effectiveness of the proposed TST strategy.
Collapse
|
3
|
Shi S, Chen Y, Yao X. In Vivo Computing Strategies for Tumor Sensitization and Targeting. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:4970-4980. [PMID: 33119523 DOI: 10.1109/tcyb.2020.3025859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several evolution strategies for in vivo computation are proposed with the aim of realizing tumor sensitization and targeting (TST) by externally manipulable nanoswimmers. In such targeting systems, nanoswimmers assembled by magnetic nanoparticles are externally manipulated to search for the tumor in the high-risk tissue by a rotating magnetic field produced by a coil system. This process can be interpreted as in vivo computation, where the tumor in the high-risk tissue corresponds to the global maximum or minimum of the in vivo optimization problem, the nanoswimmers are seen as the computational agents, the tumor-triggered biological gradient field (BGF) is used for fitness evaluation of the agents, and the high-risk tissue is the search space. Considering that the state-of-the-art magnetic nanoswimmer control method can only actuate all the nanoswimmers heading in the same direction simultaneously, we introduce the orthokinetic movement strategies into the agent location updating in the existing swarm intelligence algorithms. Especially, the gravitational search algorithm (GSA) is revisited and the corresponding in vivo optimization algorithm called orthokinetic GSA (OGSA) is proposed to carry out the TST. Furthermore, to determine the direction of the orthokinetic agent movement in every iteration of the operation, we propose several strategies according to the fitness ranking of the nanoswimmers in the BGF. To verify the superiority of the OGSA and choose the optimal evolution strategy, some numerical experiments are presented and compared with that of the brute-force search, which represents the traditional method for TST. It is found that the TST performance can be improved by the weak priority evolution strategy (WP-ES) in most of the scenarios.
Collapse
|
4
|
Wu K, Sun Y, Gong Z, Ding X, Chen Y. Seeing is Sensing - External Observation of In Vivo Biological Gradient Field by Tracking Nanoswimmers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1205-1208. [PMID: 34891503 DOI: 10.1109/embc46164.2021.9630546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work aims to demonstrate through computational analysis that, by monitoring the trajectory of externally manipulable nanoswimmers (NS), the in vivo biological gradient field (BGF) interacting with the NS can be indirectly observed. This observability is fundamental to the recently proposed framework of computational nanobiosensing (CONA) for "smart" cancer detection. We first present a novel NS propagation model to emulate the complex and chaotic NS kinetics inside the capillary network. Next, we propose an efficient control method that is able to employ the NS as in vivo sensors for the measurement of a specific BGF such as blood viscosity. The proposed method, based on the Linear Quadratic Regulator (LQR), effectively stabilizes the signal-to-noise ratio (SNR) induced by the Brownian motion of NS at a level above 10 dB to enhance the accuracy of viscosity estimation.
Collapse
|
5
|
Shi S, Yan Y, Xiong J, Cheang UK, Yao X, Chen Y. Nanorobots-Assisted Natural Computation for Multifocal Tumor Sensitization and Targeting. IEEE Trans Nanobioscience 2021; 20:154-165. [PMID: 33270565 DOI: 10.1109/tnb.2020.3042266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have proposed a new tumor sensitization and targeting (TST) framework, named in vivo computation, in our previous investigations. The problem of TST for an early and microscopic tumor is interpreted from the computational perspective with nanorobots being the "natural" computing agents, the high-risk tissue being the search space, the tumor targeted being the global optimal solution, and the tumor-triggered biological gradient field (BGF) providing the aided knowledge for fitness evaluation of nanorobots. This natural computation process can be seen as on-the-fly path planning for nanorobot swarms with an unknown target position, which is different from the traditional path planning methods. Our previous works are focusing on the TST for a solitary lesion, where we proposed the weak priority evolution strategy (WP-ES) to adapt to the actuating mode of the homogeneous magnetic field used in the state-of-the-art nanorobotic platforms, and some in vitro validations were performed. In this paper, we focus on the problem of TST for multifocal tumors, which can be seen as a multimodal optimization problem for the "natural" computation. To overcome this issue, we propose a sequential targeting strategy (Se-TS) to complete TST for the multiple lesions with the assistance of nanorobot swarms, which are maneuvered by the external actuating and tracking devices according to the WP-ES. The Se-TS is used to modify the BGF landscape after a tumor is detected by a nanorobot swarm with the gathered BGF information around the detected tumor. Next, another nanorobot swarm will be employed to find the second tumor according to the modified BGF landscape without being misguided to the previous one. In this way, all the tumor lesions will be detected one by one. In other words, the paths of nanorobots to find the targets can be generated successively with the sequential modification of the BGF landscape. To demonstrate the effectiveness of the proposed Se-TS, we perform comprehensive simulation studies by enhancing the WP-ES based swarm intelligence algorithms using this strategy considering the realistic in-body constraints. The performance is compared against that of the "brute-force" search, which corresponds to the traditional systemic tumor targeting, and also against that of the standard swarm intelligence algorithms from the algorithmic perspective. Furthermore, some in vitro experiments are performed by using Janus microparticles as magnetic nanorobots, a two-dimensional microchannel network as the human vasculature, and a magnetic nanorobotic control system as the external actuating and tracking system. Results from the in silico simulations and in vitro experiments verify the effectiveness of the proposed Se-TS for two representative BGF landscapes.
Collapse
|