Yadav AK, Nagar BC, Pradhan G. FPGA Implementation of IIR Notch and Anti-Notch Filters With an Application to Localization of Protein Hot-Spots.
IEEE Trans Nanobioscience 2023;
22:863-871. [PMID:
37022064 DOI:
10.1109/tnb.2023.3238733]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper, high-speed second-order infinite impulse response (IIR) notch filter (NF) and anti-notch filter (ANF) are designed and realized on hardware. The improvement in speed of operation for the NF is then achieved by using the re-timing concept. The ANF is designed to specify a stability margin and minimize the amplitude area. Next, an improved approach is proposed for the detection of protein hot-spot locations using the designed second-order IIR ANF. The analytical and experimental results reported in this paper show that the proposed approach provides better hot-spot prediction compared to the reported classical filtering techniques based on the IIR Chebyshev filter and S-transform. The proposed approach also yields consistency in prediction hot-spots compared to the results based on biological methodologies. Furthermore, the presented technique reveals some new "potential" hot-spots. The proposed filters are simulated and synthesized using the Xilinx Vivado 18.3 software platform with Zynq-7000 Series (ZedBoard Zynq Evaluation and Development Kit xc7z020clg484-1) FPGA family.
Collapse