• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695764)   Today's Articles (386)
For: He Y, Liu G, Rees D. New Delay-Dependent Stability Criteria for Neural Networks With Time-Varying Delay. ACTA ACUST UNITED AC 2007;18:310-4. [PMID: 17278483 DOI: 10.1109/tnn.2006.888373] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Number Cited by Other Article(s)
1
Liu G, Hua C, Liu PX, Park JH. Input-to-State Stability for Time-Delay Systems With Large Delays. IEEE TRANSACTIONS ON CYBERNETICS 2023;53:1598-1606. [PMID: 34478396 DOI: 10.1109/tcyb.2021.3106793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
2
Luo Y, Wang Z, Sheng W, Yue D. State Estimation for Discrete Time-Delayed Impulsive Neural Networks Under Communication Constraints: A Delay-Range-Dependent Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:1489-1501. [PMID: 34460395 DOI: 10.1109/tnnls.2021.3105449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
3
Deng K, Zhu S, Bao G, Fu J, Zeng Z. Multistability of Dynamic Memristor Delayed Cellular Neural Networks With Application to Associative Memories. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:690-702. [PMID: 34347606 DOI: 10.1109/tnnls.2021.3099814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
4
Chen Y, Zhang N, Yang J. A survey of recent advances on stability analysis, state estimation and synchronization control for neural networks. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
5
Lee S, Park M, Kwon O. Improved synchronization and extended dissipativity analysis for delayed neural networks with the sampled-data control. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.03.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
6
Synchronization of Fractional Stochastic Chaotic Systems via Mittag-Leffler Function. FRACTAL AND FRACTIONAL 2022. [DOI: 10.3390/fractalfract6040192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
7
Lee SH, Park MJ, Ji DH, Kwon OM. Stability and dissipativity criteria for neural networks with time-varying delays via an augmented zero equality approach. Neural Netw 2021;146:141-150. [PMID: 34856528 DOI: 10.1016/j.neunet.2021.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/29/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
8
Event-triggered synchronization of uncertain delayed generalized RDNNs. Soft comput 2021. [DOI: 10.1007/s00500-021-06166-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
9
Shi C, Hoi K, Vong S. Free-weighting-matrix inequality for exponential stability for neural networks with time-varying delay. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
10
Liu CG, Wang JL. Passivity of fractional-order coupled neural networks with multiple state/derivative couplings. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
11
Wang JL, Qiu SH, Chen WZ, Wu HN, Huang T. Recent Advances on Dynamical Behaviors of Coupled Neural Networks With and Without Reaction-Diffusion Terms. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:5231-5244. [PMID: 32175875 DOI: 10.1109/tnnls.2020.2964843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
12
Omnidirectional Mobile Robot Dynamic Model Identification by NARX Neural Network and Stability Analysis Using the APLF Method. Symmetry (Basel) 2020. [DOI: 10.3390/sym12091430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
13
Reachable set bounding for neural networks with mixed delays: Reciprocally convex approach. Neural Netw 2020;125:165-173. [PMID: 32097831 DOI: 10.1016/j.neunet.2020.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/24/2019] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
14
Wang JA, Wen XY, Hou BY. Advanced stability criteria for static neural networks with interval time-varying delays via the improved Jensen inequality. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
15
Chen J, Park JH, Xu S. Stability Analysis for Neural Networks With Time-Varying Delay via Improved Techniques. IEEE TRANSACTIONS ON CYBERNETICS 2019;49:4495-4500. [PMID: 30235159 DOI: 10.1109/tcyb.2018.2868136] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
16
Further improved results on non-fragile H∞ performance state estimation for delayed static neural networks. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
17
Delay-dependent global exponential stability for neural networks with time-varying delay. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.01.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
18
Zhang XM, Han QL, Ge X. An overview of neuronal state estimation of neural networks with time-varying delays. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
19
Wang HT, Liu ZT, He Y. Exponential stability criterion of the switched neural networks with time-varying delay. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
20
Zhang XM, Han QL, Ge X, Ding D. An overview of recent developments in Lyapunov–Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.038] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
21
Saravanan S, Umesha V, Syed Ali M, Padmanabhan S. Exponential passivity for uncertain neural networks with time-varying delays based on weighted integral inequalities. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
22
Syed Ali M, Gunasekaran N, Joo YH. Sampled-Data State Estimation of Neutral Type Neural Networks with Mixed Time-Varying Delays. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9946-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
23
Wang G, Jia R, Song H, Liu J. Stabilization of unknown nonlinear systems with T-S fuzzy model and dynamic delay partition. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2018. [DOI: 10.3233/jifs-172012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
24
Ali MS, Vadivel R, Kwon OM, Murugan K. Event Triggered Finite Time $$H_{\infty }$$ H ∞ Boundedness of Uncertain Markov Jump Neural Networks with Distributed Time Varying Delays. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9895-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
25
Liu L, Cao J, Qian C. th Moment Exponential Input-to-State Stability of Delayed Recurrent Neural Networks With Markovian Switching via Vector Lyapunov Function. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;29:3152-3163. [PMID: 28692993 DOI: 10.1109/tnnls.2017.2713824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
26
Lin WJ, He Y, Zhang CK, Long F, Wu M. Dissipativity analysis for neural networks with two-delay components using an extended reciprocally convex matrix inequality. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2018.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
27
Syed Ali M, Vadivel R, Saravanakumar R. Design of robust reliable control for T-S fuzzy Markovian jumping delayed neutral type neural networks with probabilistic actuator faults and leakage delays: An event-triggered communication scheme. ISA TRANSACTIONS 2018;77:30-48. [PMID: 29729976 DOI: 10.1016/j.isatra.2018.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/13/2017] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
28
Liu L, Zhu Q, Feng L. Lagrange stability for delayed recurrent neural networks with Markovian switching based on stochastic vector Halandy inequalities. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
29
Ma Y, Ma N, Chen L, Zheng Y, Han Y. Exponential stability for the neutral-type singular neural network with time-varying delays. INT J MACH LEARN CYB 2017. [DOI: 10.1007/s13042-017-0764-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
30
Sheng Y, Shen Y, Zhu M. Delay-Dependent Global Exponential Stability for Delayed Recurrent Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:2974-2984. [PMID: 27705864 DOI: 10.1109/tnnls.2016.2608879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
31
Shi P, Li F, Wu L, Lim CC. Neural Network-Based Passive Filtering for Delayed Neutral-Type Semi-Markovian Jump Systems. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:2101-2114. [PMID: 27323377 DOI: 10.1109/tnnls.2016.2573853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
32
Wang YW, Yang W, Xiao JW, Zeng ZG. Impulsive Multisynchronization of Coupled Multistable Neural Networks With Time-Varying Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:1560-1571. [PMID: 27071198 DOI: 10.1109/tnnls.2016.2544788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
33
Wan P, Jian J. Global convergence analysis of impulsive inertial neural networks with time-varying delays. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.03.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
34
Ding L, He Y, Liao Y, Wu M. New result for generalized neural networks with additive time-varying delays using free-matrix-based integral inequality method. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
35
Liu X, Liu X, Tang M, Wang F. Improved exponential stability criterion for neural networks with time-varying delay. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.12.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
36
Yang B, Wang J, Wang J. Stability analysis of delayed neural networks via a new integral inequality. Neural Netw 2017;88:49-57. [DOI: 10.1016/j.neunet.2017.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/07/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
37
Zhang H, Shan Q, Wang Z. Stability Analysis of Neural Networks With Two Delay Components Based on Dynamic Delay Interval Method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:259-267. [PMID: 26685269 DOI: 10.1109/tnnls.2015.2503749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
38
Shan Q, Zhang H, Wang Z, Wang J. Adjustable delay interval method based stochastic robust stability analysis of delayed neural networks. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
39
Qiu SB, Liu XG, Wang FX, Shu YJ. Robust stability analysis for uncertain recurrent neural networks with leakage delay based on delay-partitioning approach. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2670-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
40
Ding S, Wang Z, Wu Y, Zhang H. Stability criterion for delayed neural networks via Wirtinger-based multiple integral inequality. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.04.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
41
Zhang H, Xia J, Zhuang G. Improved delay-dependent stability analysis for linear time-delay systems: Based on homogeneous polynomial Lyapunov–Krasovskii functional method. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
42
Chen ZW, Yang J, Zhong SM. Delay-partitioning approach to stability analysis of generalized neural networks with time-varying delay via new integral inequality. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
43
Delay-range-dependent passivity analysis for uncertain stochastic neural networks with discrete and distributed time-varying delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.12.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
44
Li Q, Shen B, Liu Y, Huang T. Event-triggered H ∞ state estimation for discrete-time neural networks with mixed time delays and sensor saturations. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2271-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
45
Wang X, She K, Zhong S, Yang H. New and improved results for recurrent neural networks with interval time-varying delay. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.10.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
46
Yang B, Wang R, Dimirovski GM. Delay-dependent stability for neural networks with time-varying delays via a novel partitioning method. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.08.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
47
Lin DH, Wu J, Li JN. Less conservative stability condition for uncertain discrete-time recurrent neural networks with time-varying delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
48
Novel delay-dependent exponential stability criteria for neutral-type neural networks with non-differentiable time-varying discrete and neutral delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.08.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
49
Jiang Y, Li C. Exponential stability of memristor-based synchronous switching neural networks with time delays. INT J BIOMATH 2015. [DOI: 10.1142/s1793524516500169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
50
Shi K, Zhong S, Zhu H, Liu X, Zeng Y. New delay-dependent stability criteria for neutral-type neural networks with mixed random time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
PrevPage 1 of 4 1234Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA