1
|
Chen Y, Zhang N, Yang J. A survey of recent advances on stability analysis, state estimation and synchronization control for neural networks. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Zhang X, Wang D, Ota K, Dong M, Li H. Delay-Dependent Switching Approaches for Stability Analysis of Two Additive Time-Varying Delay Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:7545-7558. [PMID: 34255633 DOI: 10.1109/tnnls.2021.3085555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article analyzes the exponentially stable problem of neural networks (NNs) with two additive time-varying delay components. Disparate from the previous solutions on this similar model, switching ideas, that divide the time-varying delay intervals and treat the small intervals as switching signals, are introduced to transfer the studied problem into a switching problem. Besides, delay-dependent switching adjustment indicators are proposed to construct a novel set of augmented multiple Lyapunov-Krasovskii functionals (LKFs) that not only satisfy the switching condition but also make the suitable delay-dependent integral items be in the each corresponding LKF based on each switching mode. Combined with some switching techniques, some less conservativeness stability criteria with different numbers of switching modes are obtained. In the end, two simulation examples are performed to demonstrate the effectiveness and efficiency of the presented methods comparing other available ones.
Collapse
|
3
|
Local Lagrange Exponential Stability Analysis of Quaternion-Valued Neural Networks with Time Delays. MATHEMATICS 2022. [DOI: 10.3390/math10132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study on the local stability of quaternion-valued neural networks is of great significance to the application of associative memory and pattern recognition. In the research, we study local Lagrange exponential stability of quaternion-valued neural networks with time delays. By separating the quaternion-valued neural networks into a real part and three imaginary parts, separating the quaternion field into 34n subregions, and using the intermediate value theorem, sufficient conditions are proposed to ensure quaternion-valued neural networks have 34n equilibrium points. According to the Halanay inequality, the conditions for the existence of 24n local Lagrange exponentially stable equilibria of quaternion-valued neural networks are established. The obtained stability results improve and extend the existing ones. Under the same conditions, quaternion-valued neural networks have more stable equilibrium points than complex-valued neural networks and real-valued neural networks. The validity of the theoretical results were verified by an example.
Collapse
|
4
|
Zhang Y, Tao G, Chen M, Chen W, Zhang Z. An Implicit Function-Based Adaptive Control Scheme for Noncanonical-Form Discrete-Time Neural-Network Systems. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:5728-5739. [PMID: 31940572 DOI: 10.1109/tcyb.2019.2958844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article proposes a new implicit function-based adaptive control scheme for the discrete-time neural-network systems in a general noncanonical form. Feedback linearization for such systems leads to the output dynamics nonlinear dependence on the system states, the control input, and uncertain parameters, which leads to the nonlinear parametrization problem, the implicit relative degree problem, and the difficulty to specify an analytical adaptive controller. To address these problems, we first develop a new adaptive parameter estimation strategy to deal with all uncertain parameters, especially, those of nonlinearly parameterized forms, in the output dynamics. Then, we construct a key implicit function equation using available signals and parameter estimates. By solving the equation, a unique adaptive control law is derived to ensure asymptotic output tracking and closed-loop stability. Alternatively, we design an iterative solution-based adaptive control law which is easy to implement and ensure output tracking and closed-loop stability. The simulation study is given to demonstrate the design procedure and verify the effectiveness of the proposed adaptive control scheme.
Collapse
|
5
|
Sun B, Cao Y, Guo Z, Yan Z, Wen S, Huang T, Chen Y. Sliding Mode Stabilization of Memristive Neural Networks With Leakage Delays and Control Disturbance. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:1254-1263. [PMID: 32305943 DOI: 10.1109/tnnls.2020.2984000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, we investigate a class of memristive neural networks (MNNs) with time-varying delays and leakage delays via sliding mode control (SMC) with and without control disturbance. SMC is used to ensure MNNs' stability. According to the characteristics of the MNNs, we consider the following three models: the first is the MNNs with time-varying delays, the second is the MNNs with time-varying delays and the control disturbance, and the third is the MNNs with time-varying delays, leakage delays, and the control disturbance. We quote some assumptions and lemmas to ensure that our main results are true. The sliding surface, the corresponding sliding mode controller, and the Lyapunov functions are constructed in different models to ensure MNNs' stability. Finally, some examples and simulations verify the validity of our main results by solving linear matrix inequality (LMI), and the conclusions and analysis of the results are given.
Collapse
|
6
|
Hua C, Qiu Y, Wang Y, Guan X. An augmented delays-dependent region partitioning approach for recurrent neural networks with multiple time-varying delays. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
|
8
|
Duan L, Wang Q, Wei H, Wang Z. Multi-type synchronization dynamics of delayed reaction-diffusion recurrent neural networks with discontinuous activations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.03.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Wang H, Zou Y, Liu PX, Zhao X, Bao J, Zhou Y. Neural-network-based tracking Control for a Class of time-delay nonlinear systems with unmodeled dynamics. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2018.10.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Quantized synchronization of memristive neural networks with time-varying delays via super-twisting algorithm. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Reachable set bounding for neural networks with mixed delays: Reciprocally convex approach. Neural Netw 2020; 125:165-173. [PMID: 32097831 DOI: 10.1016/j.neunet.2020.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/24/2019] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
This paper discusses the reachable set estimation problem of neural networks with mixed delays. Firstly, by means of the maximal Lyapunov-Krasovskii functional, we obtain a non-ellipsoid form of the reachable set. Further more, when calculating the derivative of the maximum Lyapunov functional, the lower bound lemma and reciprocally convex approach method are used to solve the reciprocally convex combination term, which reduce the related decision variables. Secondly, we extend the results to polytopic uncertainties neural networks and consider the case of uncertain differentiable parameters. Finally, two numerical examples and one application example are listed to show the validity of our methods.
Collapse
|
12
|
Li D, Liu L, Liu YJ, Tong S, Chen CLP. Adaptive NN Control Without Feasibility Conditions for Nonlinear State Constrained Stochastic Systems With Unknown Time Delays. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:4485-4494. [PMID: 30932859 DOI: 10.1109/tcyb.2019.2903869] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the novel, an adaptive neural network (NN) controller is developed for a category of nonlinear stochastic systems with full state constraints and unknown time delays. The control quality and system stability suffer from the problems of state time delays and constraints which frequently arises in most real plants. The considered systems are transformed into new constrained free systems based on nonlinear mappings, such that full state constraints are never violated and the feasibility conditions on virtual controllers (the values of virtual controllers and its derivative are assumed to be known) are removed. To compensate for unknown time delayed uncertainties, the exponential type Lyapunov-Krasovskii functionals (LKFs) are employed. NNs are utilized to approximate unknown nonlinear functions appearing in the design procedure. In addition, by employing dynamic surface control (DSC) technique and less adjustable parameters, the online computation burden is lightened. The control method presented can achieve the semiglobal uniform ultimate boundedness of all the closed-loop system signals and the satisfactions of full state constraints by rigorous proof. Finally, by presenting simulation examples, the efficiency of the presented approach is revealed.
Collapse
|
13
|
Aouiti C, Miaadi F. A new fixed-time stabilization approach for neural networks with time-varying delays. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04586-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Ni Z, Malla N, Zhong X. Prioritizing Useful Experience Replay for Heuristic Dynamic Programming-Based Learning Systems. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:3911-3922. [PMID: 30059327 DOI: 10.1109/tcyb.2018.2853582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adaptive dynamic programming controller usually needs a long training period because the data usage efficiency is relatively low by discarding the samples once used. Prioritized experience replay (ER) promotes important experiences and is more efficient in learning the control process. This paper proposes integrating an efficient learning capability of prioritized ER design into heuristic dynamic programming (HDP). First, a one time-step backward state-action pair is used to design the ER tuple and, thus, avoids the model network. Second, a systematic approach is proposed to integrate the ER into both critic and action networks of HDP controller design. The proposed approach is tested for two case studies: a cart-pole balancing task and a triple-link pendulum balancing task. For fair comparison, we set the same initial weight parameters and initial starting states for both traditional HDP and the proposed approach under the same simulation environment. The proposed approach improves the required average number of trials to succeed by 60.56% for cart-pole, and 56.89% for triple-link balancing tasks, in comparison with the traditional HDP approach. Also, we have added results of ER-based HDP for comparison. Moreover, theoretical convergence analysis is presented to guarantee the stability of the proposed control design.
Collapse
|
15
|
Yang J, Guo Y, Zhao W. Long short-term memory neural network based fault detection and isolation for electro-mechanical actuators. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.06.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Guo Z, Gong S, Wen S, Huang T. Event-Based Synchronization Control for Memristive Neural Networks With Time-Varying Delay. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:3268-3277. [PMID: 29994686 DOI: 10.1109/tcyb.2018.2839686] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we investigate the global synchronization control problem for memristive neural networks (MNNs) with time-varying delay. A novel event-triggered controller is introduced with the linear diffusive term and discontinuous sign term. In order to greatly reduce the computation cost of the controller under certain event-triggering condition, two event-based control schemes are proposed with static event-triggering condition and dynamic event-triggering condition. Some sufficient conditions are derived by these control schemes to ensure the response MNN to be synchronized with the driving one. Furthermore, under certain event-triggering conditions, a positive lower bound is achieved for the interexecution time to guarantee that Zeno behavior cannot be executed. Finally, numerical simulations are provided to substantiate the effectiveness of the proposed theoretical results.
Collapse
|
17
|
Zhang H, Zeng Z, Han QL. Synchronization of Multiple Reaction-Diffusion Neural Networks With Heterogeneous and Unbounded Time-Varying Delays. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:2980-2991. [PMID: 29994282 DOI: 10.1109/tcyb.2018.2837090] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The synchronization problem of multiple/coupled reaction-diffusion neural networks with time-varying delays is investigated. Differing from the existing considerations, state delays among distinct neurons and coupling delays among different subnetworks are included in the proposed model, the assumptions posed on the arisen delays are very weak, time-varying, heterogeneous, even unbounded delays are permitted. To overcome the difficulties from this kind of delay as well as diffusion effects, a comparison-based approach is applied to this model and a series of algebraic criteria are successfully obtained to verify the global asymptotical synchronization. By specifying the existing delays, some M -matrix-based criteria are derived to justify the power-rate synchronization and exponential synchronization. In addition, new criterion on synchronization of general connected neural networks without diffusion effects is also given. Finally, two simulation examples are given to verify the effectiveness of the obtained theoretical results and provide a comparison with the existing criterion.
Collapse
|
18
|
Wang X, Che M, Wei Y. Neural networks based approach solving multi-linear systems withM-tensors. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Zhang H, Pal NR, Sheng Y, Zeng Z. Distributed Adaptive Tracking Synchronization for Coupled Reaction-Diffusion Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1462-1475. [PMID: 30281497 DOI: 10.1109/tnnls.2018.2869631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper considers the tracking synchronization problem for a class of coupled reaction-diffusion neural networks (CRDNNs) with undirected topology. For the case where the tracking trajectory has identical individual dynamic as that of the network nodes, the edge-based and vertex-based adaptive strategies on coupling strengths as well as adaptive controllers, which demand merely the local neighbor information, are proposed to synchronize the CRDNNs to the tracking trajectory. To reduce the control costs, an adaptive pinning control technique is employed. For the case where the tracking trajectory has different individual dynamic from that of the network nodes, the vertex-based adaptive strategy is proposed to drive the synchronization error to a relatively small area, which is adjustable according to the parameters of the adaptive strategy. This kind of adaptive design can enhance the robustness of the network against the external disturbance posed on the tracking trajectory. The obtained theoretical results are verified by two representative examples.
Collapse
|
20
|
Wang X, Li X, Wu Q, Yin X. Neural network based adaptive dynamic surface control of nonaffine nonlinear systems with time delay and input hysteresis nonlinearities. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.12.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Fractional delay segments method on time-delayed recurrent neural networks with impulsive and stochastic effects: An exponential stability approach. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Yao X, Wang Z, Zhang H. A novel photovoltaic power forecasting model based on echo state network. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
The importance of recurrent top-down synaptic connections for the anticipation of dynamic emotions. Neural Netw 2018; 109:19-30. [PMID: 30388430 DOI: 10.1016/j.neunet.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 11/20/2022]
Abstract
Different studies have shown the efficiency of a feed-forward neural network in categorizing basic emotional facial expressions. However, recent findings in psychology and cognitive neuroscience suggest that visual recognition is not a pure bottom-up process but likely involves top-down recurrent connectivity. In the present computational study, we compared the performances of a pure bottom-up neural network (a standard multi-layer perceptron, MLP) with a neural network involving recurrent top-down connections (a simple recurrent network, SRN) in the anticipation of emotional expressions. In two complementary simulations, results revealed that the SRN outperformed the MLP for ambiguous intensities in the temporal sequence, when the emotions were not fully depicted but when sufficient contextual information (related to previous time frames) was provided. Taken together, these results suggest that, despite the cost of recurrent connections in terms of energy and processing time for biological organisms, they can provide a substantial advantage for the fast recognition of uncertain visual signals.
Collapse
|
24
|
Ding S, Wang Z, Zhang H. Event-Triggered Stabilization of Neural Networks With Time-Varying Switching Gains and Input Saturation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:5045-5056. [PMID: 29994184 DOI: 10.1109/tnnls.2017.2787642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper investigates the event-triggered stabilization of neural networks (NNs) subject to input saturation. The main core lies in the design of a novel controller with time-varying switching gains and the associated switching event-triggered condition (ETC). The ETC is essentially a switching between the aperiodic sampling and continuous event trigger. The control gains of the designed controller are composed of an exponentially decaying term and two gain matrices. The two gain matrices are required to be switched when the switching between the aperiodic sampling and continuous event trigger is met. By employing the generalized sector condition and switching Lyapunov function, several sufficient conditions that ensure the local exponential stability of the NNs are formulated in terms of linear matrix inequalities (LMIs). Both the exponentially decaying term and switching gains improve the feasible region of LMIs, and then they are helpful to enlarge the set of admissible initial conditions, the threshold in ETC, and the average waiting time. Together with several optimization problems, two numerical examples are employed to validate the effectiveness of our results.
Collapse
|
25
|
Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.02.077] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Shan Q, Zhang H, Wang Z, Zhang Z. Global Asymptotic Stability and Stabilization of Neural Networks With General Noise. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:597-607. [PMID: 28055925 DOI: 10.1109/tnnls.2016.2637567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neural networks (NNs) in the stochastic environment were widely modeled as stochastic differential equations, which were driven by white noise, such as Brown or Wiener process in the existing papers. However, they are not necessarily the best models to describe dynamic characters of NNs disturbed by nonwhite noise in some specific situations. In this paper, general noise disturbance, which may be nonwhite, is introduced to NNs. Since NNs with nonwhite noise cannot be described by Itô integral equation, a novel modeling method of stochastic NNs is utilized. By a framework in light of random field approach and Lyapunov theory, the global asymptotic stability and stabilization in probability or in the mean square of NNs with general noise are analyzed, respectively. Criteria for the concerned systems based on linear matrix inequality are proposed. Some examples are given to illustrate the effectiveness of the obtained results.
Collapse
|
27
|
Viegas F, Rocha L, Gonçalves M, Mourão F, Sá G, Salles T, Andrade G, Sandin I. A Genetic Programming approach for feature selection in highly dimensional skewed data. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.08.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Wang L, Liu X, Zhang H. Further studies on H∞ observer design for continuous-time Takagi–Sugeno fuzzy model. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2017.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
New results for exponential stability of complex-valued memristive neural networks with variable delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.08.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Sheng Y, Shen Y, Zhu M. Delay-Dependent Global Exponential Stability for Delayed Recurrent Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2974-2984. [PMID: 27705864 DOI: 10.1109/tnnls.2016.2608879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper deals with the global exponential stability for delayed recurrent neural networks (DRNNs). By constructing an augmented Lyapunov-Krasovskii functional and adopting the reciprocally convex combination approach and Wirtinger-based integral inequality, delay-dependent global exponential stability criteria are derived in terms of linear matrix inequalities. Meanwhile, a general and effective method on global exponential stability analysis for DRNNs is given through a lemma, where the exponential convergence rate can be estimated. With this lemma, some global asymptotic stability criteria of DRNNs acquired in previous studies can be generalized to global exponential stability ones. Finally, a frequently utilized numerical example is carried out to illustrate the effectiveness and merits of the proposed theoretical results.
Collapse
|
31
|
Cui Y, Zhang H, Qu Q, Luo C. Synthetic adaptive fuzzy tracking control for MIMO uncertain nonlinear systems with disturbance observer. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Stability Analysis for Memristive Recurrent Neural Network Under Different External Stimulus. Neural Process Lett 2017. [DOI: 10.1007/s11063-017-9671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Chen H, Shi P, Lim CC. Exponential Synchronization for Markovian Stochastic Coupled Neural Networks of Neutral-Type via Adaptive Feedback Control. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:1618-1632. [PMID: 27093709 DOI: 10.1109/tnnls.2016.2546962] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we investigate the adaptive exponential synchronization in both the mean square and the almost sure senses for an array of N identical Markovian stochastic coupled neural networks of neutral-type with time-varying delay and random coupling strength. The generalized Lyapunov theorem of the exponential stability in the mean square for the neutral stochastic Markov system with the time-varying delay is first established. The time-varying delay in the system is assumed to be a bounded measurable function. Then, sufficient conditions to guarantee the exponential synchronization in the mean square for the underlying system are developed under an adaptive feedback controller, which are given in terms of the M -matrix and the algebraic inequalities. Under the same conditions, the almost sure exponential synchronization is also presented. A numerical example is given to show the effectiveness and potential of the proposed theoretical results.
Collapse
|
34
|
Liu Y, Zhang C, Kao Y, Hou C. Exponential Stability of Neutral-Type Impulsive Markovian Jump Neural Networks with General Incomplete Transition Rates. Neural Process Lett 2017. [DOI: 10.1007/s11063-017-9650-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Liu J, Ma Y, Zhang H, Su H, Xiao G. A modified fuzzy min–max neural network for data clustering and its application on pipeline internal inspection data. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Liu X, Zhang K, Xie WC. Pinning Impulsive Synchronization of Reaction-Diffusion Neural Networks With Time-Varying Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:1055-1067. [PMID: 26887014 DOI: 10.1109/tnnls.2016.2518479] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper investigates the exponential synchronization of reaction-diffusion neural networks with time-varying delays subject to Dirichlet boundary conditions. A novel type of pinning impulsive controllers is proposed to synchronize the reaction-diffusion neural networks with time-varying delays. By applying the Lyapunov functional method, sufficient verifiable conditions are constructed for the exponential synchronization of delayed reaction-diffusion neural networks with large and small delay sizes. It is shown that synchronization can be realized by pinning impulsive control of a small portion of neurons of the network; the technique used in this paper is also applicable to reaction-diffusion networks with Neumann boundary conditions. Numerical examples are presented to demonstrate the effectiveness of the theoretical results.
Collapse
|
37
|
Ding L, He Y, Liao Y, Wu M. New result for generalized neural networks with additive time-varying delays using free-matrix-based integral inequality method. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Zhang H, Wang J, Wang Z, Liang H. Sampled-Data Synchronization Analysis of Markovian Neural Networks With Generally Incomplete Transition Rates. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:740-752. [PMID: 26731780 DOI: 10.1109/tnnls.2015.2507790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper investigates the problem of sampled-data synchronization for Markovian neural networks with generally incomplete transition rates. Different from traditional Markovian neural networks, each transition rate can be completely unknown or only its estimate value is known in this paper. Compared with most of existing Markovian neural networks, our model is more practical because the transition rates in Markovian processes are difficult to precisely acquire due to the limitations of equipment and the influence of uncertain factors. In addition, the time-dependent Lyapunov-Krasovskii functional is proposed to synchronize drive system and response system. By applying an extended Jensen's integral inequality and Wirtinger's inequality, new delay-dependent synchronization criteria are obtained, which fully utilize the upper bound of variable sampling interval and the sawtooth structure information of varying input delay. Moreover, the desired sampled-data controllers are obtained. Finally, two examples are provided to illustrate the effectiveness of the proposed method.
Collapse
|
39
|
Zhang H, Shan Q, Wang Z. Stability Analysis of Neural Networks With Two Delay Components Based on Dynamic Delay Interval Method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:259-267. [PMID: 26685269 DOI: 10.1109/tnnls.2015.2503749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, a dynamic delay interval (DDI) method is proposed to deal with the stability problem of neural networks with two delay components. This method extends the fixed interval of a time-varying delay to a dynamic one, which relaxes the restriction on upper and lower bounds of the delay intervals. Combining the reciprocally convex combination technique and Wirtinger integral inequality, the DDI method leads to some much less conservative delay-dependent stability criteria based on a linear matrix inequality for neural networks with two delay components. Furthermore, the criteria for the system with a single time-varying delay are provided. Some examples are given to illustrate the effectiveness of the obtained results.
Collapse
|
40
|
New robust stability condition for discrete-time recurrent neural networks with time-varying delays and nonlinear perturbations. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Shan Q, Zhang H, Wang Z, Wang J. Adjustable delay interval method based stochastic robust stability analysis of delayed neural networks. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
|
43
|
Zhang Y, Tao G, Chen M. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:1864-1877. [PMID: 26285223 DOI: 10.1109/tnnls.2015.2461001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Collapse
|
44
|
Liang X, Wang L, Wang Y, Wang R. Dynamical Behavior of Delayed Reaction-Diffusion Hopfield Neural Networks Driven by Infinite Dimensional Wiener Processes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:1816-1826. [PMID: 26259224 DOI: 10.1109/tnnls.2015.2460117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we focus on the long time behavior of the mild solution to delayed reaction-diffusion Hopfield neural networks (DRDHNNs) driven by infinite dimensional Wiener processes. We analyze the existence, uniqueness, and stability of this system under the local Lipschitz function by constructing an appropriate Lyapunov-Krasovskii function and utilizing the semigroup theory. Some easy-to-test criteria affecting the well-posedness and stability of the networks, such as infinite dimensional noise and diffusion effect, are obtained. The criteria can be used as theoretic guidance to stabilize DRDHNNs in practical applications when infinite dimensional noise is taken into consideration. Meanwhile, considering the fact that the standard Brownian motion is a special case of infinite dimensional Wiener process, we undertake an analysis of the local Lipschitz condition, which has a wider range than the global Lipschitz condition. Two samples are given to examine the availability of the results in this paper. Simulations are also given using the MATLAB.
Collapse
|
45
|
Duan L, Huang L, Guo Z. Global robust dissipativity of interval recurrent neural networks with time-varying delay and discontinuous activations. CHAOS (WOODBURY, N.Y.) 2016; 26:073101. [PMID: 27475061 DOI: 10.1063/1.4945798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, the problems of robust dissipativity and robust exponential dissipativity are discussed for a class of recurrent neural networks with time-varying delay and discontinuous activations. We extend an invariance principle for the study of the dissipativity problem of delay systems to the discontinuous case. Based on the developed theory, some novel criteria for checking the global robust dissipativity and global robust exponential dissipativity of the addressed neural network model are established by constructing appropriate Lyapunov functionals and employing the theory of Filippov systems and matrix inequality techniques. The effectiveness of the theoretical results is shown by two examples with numerical simulations.
Collapse
Affiliation(s)
- Lian Duan
- School of Science, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Lihong Huang
- School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan 410114, People's Republic of China
| | - Zhenyuan Guo
- College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
46
|
Zhang W, Li J, Xing K, Ding C. Synchronization for distributed parameter NNs with mixed delays via sampled-data control. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.10.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Yang Y, Zhang S, Yin Y. A modified ELM algorithm for the prediction of silicon content in hot metal. Neural Comput Appl 2016. [DOI: 10.1007/s00521-014-1775-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Tu Z, Cao J, Hayat T. Global exponential stability in Lagrange sense for inertial neural networks with time-varying delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.06.078] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Li Y, Liao X, Li H. Global attracting sets of non-autonomous and complex-valued neural networks with time-varying delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.08.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Han M, Zhang M, Zhang Y. Projective synchronization between two delayed networks of different sizes with nonidentical nodes and unknown parameters. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|