• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695764)   Today's Articles (386)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Chen Y, Zhang N, Yang J. A survey of recent advances on stability analysis, state estimation and synchronization control for neural networks. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
2
Finite-time extended dissipativity of delayed Takagi–Sugeno fuzzy neural networks using a free-matrix-based double integral inequality. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04348-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
3
Zhang XM, Han QL, Ge X, Ding D. An overview of recent developments in Lyapunov–Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.038] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
4
Yang Y, He Y, Wang Y, Wu M. Stability analysis of fractional-order neural networks: An LMI approach. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.01.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
5
Liu X, Liu X, Tang M, Wang F. Improved exponential stability criterion for neural networks with time-varying delay. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.12.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
6
Zhang H, Shan Q, Wang Z. Stability Analysis of Neural Networks With Two Delay Components Based on Dynamic Delay Interval Method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:259-267. [PMID: 26685269 DOI: 10.1109/tnnls.2015.2503749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
7
Qiu SB, Liu XG, Wang FX, Shu YJ. Robust stability analysis for uncertain recurrent neural networks with leakage delay based on delay-partitioning approach. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2670-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
An improved stability criterion for generalized neural networks with additive time-varying delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
9
Dissipativity analysis of neural networks with time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Wang Z, Liu L, Shan QH, Zhang H. Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:2589-2595. [PMID: 25608313 DOI: 10.1109/tnnls.2014.2387434] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
11
Zeng HB, He Y, Wu M, Xiao SP. Stability analysis of generalized neural networks with time-varying delays via a new integral inequality. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.02.055] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
12
Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach. Neural Netw 2014;54:57-69. [DOI: 10.1016/j.neunet.2014.02.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/08/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
13
Less conservative stability criteria for stochastic discrete-time recurrent neural networks with the time-varying delay. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2012.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
14
Zhang H, Yang F, Liu X, Zhang Q. Stability analysis for neural networks with time-varying delay based on quadratic convex combination. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2013;24:513-521. [PMID: 24808373 DOI: 10.1109/tnnls.2012.2236571] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
15
Kwon OM, Park MJ, Lee SM, Park JH, Cha EJ. Stability for neural networks with time-varying delays via some new approaches. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2013;24:181-193. [PMID: 24808274 DOI: 10.1109/tnnls.2012.2224883] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
16
State estimation of recurrent neural networks with interval time-varying delay: an improved delay-dependent approach. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-1061-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
17
Tao Li, Wei Xing Zheng, Chong Lin. Delay-Slope-Dependent Stability Results of Recurrent Neural Networks. ACTA ACUST UNITED AC 2011;22:2138-43. [DOI: 10.1109/tnn.2011.2169425] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
18
Improved Stability Results for Stochastic Cohen–Grossberg Neural Networks with Discrete and Distributed Delays. Neural Process Lett 2011. [DOI: 10.1007/s11063-011-9206-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
19
Global Asymptotic Stability for a Class of Generalized Neural Networks With Interval Time-Varying Delays. ACTA ACUST UNITED AC 2011;22:1180-92. [DOI: 10.1109/tnn.2011.2147331] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
20
Cheng-De Zheng, Huaguang Zhang, Zhanshan Wang. An Augmented LKF Approach Involving Derivative Information of Both State and Delay. ACTA ACUST UNITED AC 2010;21:1100-9. [DOI: 10.1109/tnn.2010.2048434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
21
Chen Y, Bi W, Li W, Wu Y. Less conservative results of state estimation for neural networks with time-varying delay. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2009.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
22
Stability analysis for neural networks with time-varying delay: A more general delay decomposition approach. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2009.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
23
Fu J, Zhang H, Ma T, Zhang Q. On passivity analysis for stochastic neural networks with interval time-varying delay. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2009.10.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
24
New delay-dependent stability results for discrete-time recurrent neural networks with time-varying delay. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2009.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
25
Zhanshan Wang, Huaguang Zhang, Wen Yu. Robust Stability of Cohen–Grossberg Neural Networks via State Transmission Matrix. ACTA ACUST UNITED AC 2009;20:169-74. [DOI: 10.1109/tnn.2008.2009119] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA