Hamedi M, Salleh SH, Astaraki M, Noor AM. EMG-based facial gesture recognition through versatile elliptic basis function neural network.
Biomed Eng Online 2013;
12:73. [PMID:
23866903 PMCID:
PMC3724582 DOI:
10.1186/1475-925x-12-73]
[Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background
Recently, the recognition of different facial gestures using facial neuromuscular activities has been proposed for human machine interfacing applications. Facial electromyograms (EMGs) analysis is a complicated field in biomedical signal processing where accuracy and low computational cost are significant concerns. In this paper, a very fast versatile elliptic basis function neural network (VEBFNN) was proposed to classify different facial gestures. The effectiveness of different facial EMG time-domain features was also explored to introduce the most discriminating.
Methods
In this study, EMGs of ten facial gestures were recorded from ten subjects using three pairs of surface electrodes in a bi-polar configuration. The signals were filtered and segmented into distinct portions prior to feature extraction. Ten different time-domain features, namely, Integrated EMG, Mean Absolute Value, Mean Absolute Value Slope, Maximum Peak Value, Root Mean Square, Simple Square Integral, Variance, Mean Value, Wave Length, and Sign Slope Changes were extracted from the EMGs. The statistical relationships between these features were investigated by Mutual Information measure. Then, the feature combinations including two to ten single features were formed based on the feature rankings appointed by Minimum-Redundancy-Maximum-Relevance (MRMR) and Recognition Accuracy (RA) criteria. In the last step, VEBFNN was employed to classify the facial gestures. The effectiveness of single features as well as the feature sets on the system performance was examined by considering the two major metrics, recognition accuracy and training time. Finally, the proposed classifier was assessed and compared with conventional methods support vector machines and multilayer perceptron neural network.
Results
The average classification results showed that the best performance for recognizing facial gestures among all single/multi-features was achieved by Maximum Peak Value with 87.1% accuracy. Moreover, the results proved a very fast procedure since the training time during classification via VEBFNN was 0.105 seconds. It was also indicated that MRMR was not a proper criterion to be used for making more effective feature sets in comparison with RA.
Conclusions
This work was accomplished by introducing the most discriminating facial EMG time-domain feature for the recognition of different facial gestures; and suggesting VEBFNN as a promising method in EMG-based facial gesture classification to be used for designing interfaces in human machine interaction systems.
Collapse