Tung SW, Quek C, Guan C. SaFIN: a self-adaptive fuzzy inference network.
IEEE TRANSACTIONS ON NEURAL NETWORKS 2011;
22:1928-1940. [PMID:
22020678 DOI:
10.1109/tnn.2011.2167720]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
There are generally two approaches to the design of a neural fuzzy system: 1) design by human experts, and 2) design through a self-organization of the numerical training data. While the former approach is highly subjective, the latter is commonly plagued by one or more of the following major problems: 1) an inconsistent rulebase; 2) the need for prior knowledge such as the number of clusters to be computed; 3) heuristically designed knowledge acquisition methodologies; and 4) the stability-plasticity tradeoff of the system. This paper presents a novel self-organizing neural fuzzy system, named Self-Adaptive Fuzzy Inference Network (SaFIN), to address the aforementioned deficiencies. The proposed SaFIN model employs a new clustering technique referred to as categorical learning-induced partitioning (CLIP), which draws inspiration from the behavioral category learning process demonstrated by humans. By employing the one-pass CLIP, SaFIN is able to incorporate new clusters in each input-output dimension when the existing clusters are not able to give a satisfactory representation of the incoming training data. This not only avoids the need for prior knowledge regarding the number of clusters needed for each input-output dimension, but also allows SaFIN the flexibility to incorporate new knowledge with old knowledge in the system. In addition, the self-automated rule formation mechanism proposed within SaFIN ensures that it obtains a consistent resultant rulebase. Subsequently, the proposed SaFIN model is employed in a series of benchmark simulations to demonstrate its efficiency as a self-organizing neural fuzzy system, and excellent performances have been achieved.
Collapse