Guo Z, Ou S, Wang J. Multistability of Switched Neural Networks With Gaussian Activation Functions Under State-Dependent Switching.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;
33:6569-6583. [PMID:
34077372 DOI:
10.1109/tnnls.2021.3082560]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article presents theoretical results on the multistability of switched neural networks with Gaussian activation functions under state-dependent switching. It is shown herein that the number and location of the equilibrium points of the switched neural networks can be characterized by making use of the geometrical properties of Gaussian functions and local linearization based on the Brouwer fixed-point theorem. Four sets of sufficient conditions are derived to ascertain the existence of 7p15p23p3 equilibrium points, and 4p13p22p3 of them are locally stable, wherein p1 , p2 , and p3 are nonnegative integers satisfying 0 ≤ p1+p2+p3 ≤ n and n is the number of neurons. It implies that there exist up to 7n equilibria, and up to 4n of them are locally stable when p1=n . It also implies that properly selecting p1 , p2 , and p3 can engender a desirable number of stable equilibria. Two numerical examples are elaborated to substantiate the theoretical results.
Collapse