Chen CLP. Neural Approximation-Based Adaptive Control for a Class of Nonlinear Nonstrict Feedback Discrete-Time Systems.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;
28:1531-1541. [PMID:
28113479 DOI:
10.1109/tnnls.2016.2531089]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, an adaptive control approach-based neural approximation is developed for a class of uncertain nonlinear discrete-time (DT) systems. The main characteristic of the considered systems is that they can be viewed as a class of multi-input multioutput systems in the nonstrict feedback structure. The similar control problem of this class of systems has been addressed in the past, but it focused on the continuous-time systems. Due to the complicacies of the system structure, it will become more difficult for the controller design and the stability analysis. To stabilize this class of systems, a new recursive procedure is developed, and the effect caused by the noncausal problem in the nonstrict feedback DT structure can be solved using a semirecurrent neural approximation. Based on the Lyapunov difference approach, it is proved that all the signals of the closed-loop system are semiglobal, ultimately uniformly bounded, and a good tracking performance can be guaranteed. The feasibility of the proposed controllers can be validated by setting a simulation example.
Collapse