1
|
Wang X, Jin Y, Du W, Wang J. Evolving Dual-Threshold Bienenstock-Cooper-Munro Learning Rules in Echo State Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:1572-1583. [PMID: 35763483 DOI: 10.1109/tnnls.2022.3184004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The strengthening and the weakening of synaptic strength in existing Bienenstock-Cooper-Munro (BCM) learning rule are determined by a long-term potentiation (LTP) sliding modification threshold and the afferent synaptic activities. However, synaptic long-term depression (LTD) even affects low-active synapses during the induction of synaptic plasticity, which may lead to information loss. Biological experiments have found another LTD threshold that can induce either potentiation or depression or no change, even at the activated synapses. In addition, existing BCM learning rules can only select a set of fixed rule parameters, which is biologically implausible and practically inflexible to learn the structural information of input signals. In this article, an evolved dual-threshold BCM learning rule is proposed to regulate the reservoir internal connection weights of the echo-state-network (ESN), which can contribute to alleviating information loss and enhancing learning performance by introducing different optimal LTD thresholds for different postsynaptic neurons. Our experimental results show that the evolved dual-threshold BCM learning rule can result in the synergistic learning of different plasticity rules, effectively improving the learning performance of an ESN in comparison with existing neural plasticity learning rules and some state-of-the-art ESN variants on three widely used benchmark tasks and the prediction of an esterification process.
Collapse
|
2
|
Chakraborty B, Mukhopadhyay S. Heterogeneous recurrent spiking neural network for spatio-temporal classification. Front Neurosci 2023; 17:994517. [PMID: 36793542 PMCID: PMC9922697 DOI: 10.3389/fnins.2023.994517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Spiking Neural Networks are often touted as brain-inspired learning models for the third wave of Artificial Intelligence. Although recent SNNs trained with supervised backpropagation show classification accuracy comparable to deep networks, the performance of unsupervised learning-based SNNs remains much lower. This paper presents a heterogeneous recurrent spiking neural network (HRSNN) with unsupervised learning for spatio-temporal classification of video activity recognition tasks on RGB (KTH, UCF11, UCF101) and event-based datasets (DVS128 Gesture). We observed an accuracy of 94.32% for the KTH dataset, 79.58% and 77.53% for the UCF11 and UCF101 datasets, respectively, and an accuracy of 96.54% on the event-based DVS Gesture dataset using the novel unsupervised HRSNN model. The key novelty of the HRSNN is that the recurrent layer in HRSNN consists of heterogeneous neurons with varying firing/relaxation dynamics, and they are trained via heterogeneous spike-time-dependent-plasticity (STDP) with varying learning dynamics for each synapse. We show that this novel combination of heterogeneity in architecture and learning method outperforms current homogeneous spiking neural networks. We further show that HRSNN can achieve similar performance to state-of-the-art backpropagation trained supervised SNN, but with less computation (fewer neurons and sparse connection) and less training data.
Collapse
|
3
|
Abstract
In recent times, particulate matter (PM2.5) is one of the most critical air quality contaminants, and the rise of its concentration will intensify the hazard of cleanrooms. The forecasting of the concentration of PM2.5 has great importance to improve the safety of the highly pollutant-sensitive electronic circuits in the factories, especially inside semiconductor industries. In this paper, a Single-Dense Layer Bidirectional Long Short-term Memory (BiLSTM) model is developed to forecast the PM2.5 concentrations in the indoor environment by using the time series data. The real-time data samples of PM2.5 concentrations were obtained by using an industrial-grade sensor based on edge computing. The proposed model provided the best results comparing with the other existing models in terms of mean absolute error, mean square error, root mean square error, and mean absolute percentage error. These results show that the low error of forecasting PM2.5 concentration in a cleanroom in a semiconductor factory using the proposed Single-Dense Layer BiLSTM method is considerably high.
Collapse
|
4
|
Xu T, An D, Jia Y, Yue Y. A Review: Point Cloud-Based 3D Human Joints Estimation. SENSORS (BASEL, SWITZERLAND) 2021; 21:1684. [PMID: 33804411 PMCID: PMC7957572 DOI: 10.3390/s21051684] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Joint estimation of the human body is suitable for many fields such as human-computer interaction, autonomous driving, video analysis and virtual reality. Although many depth-based researches have been classified and generalized in previous review or survey papers, the point cloud-based pose estimation of human body is still difficult due to the disorder and rotation invariance of the point cloud. In this review, we summarize the recent development on the point cloud-based pose estimation of the human body. The existing works are divided into three categories based on their working principles, including template-based method, feature-based method and machine learning-based method. Especially, the significant works are highlighted with a detailed introduction to analyze their characteristics and limitations. The widely used datasets in the field are summarized, and quantitative comparisons are provided for the representative methods. Moreover, this review helps further understand the pertinent applications in many frontier research directions. Finally, we conclude the challenges involved and problems to be solved in future researches.
Collapse
Affiliation(s)
- Tianxu Xu
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; (T.X.); (D.A.); (Y.J.)
| | - Dong An
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; (T.X.); (D.A.); (Y.J.)
| | - Yuetong Jia
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; (T.X.); (D.A.); (Y.J.)
| | - Yang Yue
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; (T.X.); (D.A.); (Y.J.)
- Angle AI (Tianjin) Technology Company Ltd., Tianjin 300450, China
| |
Collapse
|
5
|
Surrogate-Assisted Evolutionary Search of Spiking Neural Architectures in Liquid State Machines. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.04.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Berlin SJ, John M. Light weight convolutional models with spiking neural network based human action recognition. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-191914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- S. Jeba Berlin
- Department of Electronics Engineering, Madras Institute of Technology, Anna University, Chennai, India
| | - Mala John
- Department of Electronics Engineering, Madras Institute of Technology, Anna University, Chennai, India
| |
Collapse
|
7
|
Ergen T, Kozat SS. Online Training of LSTM Networks in Distributed Systems for Variable Length Data Sequences. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:5159-5165. [PMID: 29990241 DOI: 10.1109/tnnls.2017.2770179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this brief, we investigate online training of long short term memory (LSTM) architectures in a distributed network of nodes, where each node employs an LSTM-based structure for online regression. In particular, each node sequentially receives a variable length data sequence with its label and can only exchange information with its neighbors to train the LSTM architecture. We first provide a generic LSTM-based regression structure for each node. In order to train this structure, we put the LSTM equations in a nonlinear state-space form for each node and then introduce a highly effective and efficient distributed particle filtering (DPF)-based training algorithm. We also introduce a distributed extended Kalman filtering-based training algorithm for comparison. Here, our DPF-based training algorithm guarantees convergence to the performance of the optimal LSTM coefficients in the mean square error sense under certain conditions. We achieve this performance with communication and computational complexity in the order of the first-order gradient-based methods. Through both simulated and real-life examples, we illustrate significant performance improvements with respect to the state-of-the-art methods.
Collapse
|
8
|
Soltoggio A, Stanley KO, Risi S. Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks. Neural Netw 2018; 108:48-67. [PMID: 30142505 DOI: 10.1016/j.neunet.2018.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Biological neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifelong learning. The interplay of these elements leads to the emergence of biological intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) employ simulated evolution in-silico to breed plastic neural networks with the aim to autonomously design and create learning systems. EPANN experiments evolve networks that include both innate properties and the ability to change and learn in response to experiences in different environments and problem domains. EPANNs' aims include autonomously creating learning systems, bootstrapping learning from scratch, recovering performance in unseen conditions, testing the computational advantages of particular neural components, and deriving hypotheses on the emergence of biological learning. Thus, EPANNs may include a large variety of different neuron types and dynamics, network architectures, plasticity rules, and other factors. While EPANNs have seen considerable progress over the last two decades, current scientific and technological advances in artificial neural networks are setting the conditions for radically new approaches and results. Exploiting the increased availability of computational resources and of simulation environments, the often challenging task of hand-designing learning neural networks could be replaced by more autonomous and creative processes. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and possible developments are presented.
Collapse
Affiliation(s)
- Andrea Soltoggio
- Department of Computer Science, Loughborough University, LE11 3TU, Loughborough, UK.
| | - Kenneth O Stanley
- Department of Computer Science, University of Central Florida, Orlando, FL, USA.
| | | |
Collapse
|
9
|
Zhang Y, Li P, Jin Y, Choe Y. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:2635-2649. [PMID: 25643415 DOI: 10.1109/tnnls.2015.2388544] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents a bioinspired digital liquid-state machine (LSM) for low-power very-large-scale-integration (VLSI)-based machine learning applications. To the best of the authors' knowledge, this is the first work that employs a bioinspired spike-based learning algorithm for the LSM. With the proposed online learning, the LSM extracts information from input patterns on the fly without needing intermediate data storage as required in offline learning methods such as ridge regression. The proposed learning rule is local such that each synaptic weight update is based only upon the firing activities of the corresponding presynaptic and postsynaptic neurons without incurring global communications across the neural network. Compared with the backpropagation-based learning, the locality of computation in the proposed approach lends itself to efficient parallel VLSI implementation. We use subsets of the TI46 speech corpus to benchmark the bioinspired digital LSM. To reduce the complexity of the spiking neural network model without performance degradation for speech recognition, we study the impacts of synaptic models on the fading memory of the reservoir and hence the network performance. Moreover, we examine the tradeoffs between synaptic weight resolution, reservoir size, and recognition performance and present techniques to further reduce the overhead of hardware implementation. Our simulation results show that in terms of isolated word recognition evaluated using the TI46 speech corpus, the proposed digital LSM rivals the state-of-the-art hidden Markov-model-based recognizer Sphinx-4 and outperforms all other reported recognizers including the ones that are based upon the LSM or neural networks.
Collapse
|
10
|
Qu H, Xie X, Liu Y, Zhang M, Lu L. Improved perception-based spiking neuron learning rule for real-time user authentication. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Chrol-Cannon J, Jin Y. Computational modeling of neural plasticity for self-organization of neural networks. Biosystems 2014; 125:43-54. [PMID: 24769242 DOI: 10.1016/j.biosystems.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Abstract
Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence.
Collapse
Affiliation(s)
- Joseph Chrol-Cannon
- Department of Computing, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Yaochu Jin
- Department of Computing, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
12
|
Afshar S, Cohen GK, Wang RM, Van Schaik A, Tapson J, Lehmann T, Hamilton TJ. The ripple pond: enabling spiking networks to see. Front Neurosci 2013; 7:212. [PMID: 24298234 PMCID: PMC3829577 DOI: 10.3389/fnins.2013.00212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/23/2013] [Indexed: 11/24/2022] Open
Abstract
We present the biologically inspired Ripple Pond Network (RPN), a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns (TP) suitable for recognition by temporal coding learning and memory networks. The RPN has been developed as a hardware solution linking previously implemented neuromorphic vision and memory structures such as frameless vision sensors and neuromorphic temporal coding spiking neural networks. Working together such systems are potentially capable of delivering end-to-end high-speed, low-power and low-resolution recognition for mobile and autonomous applications where slow, highly sophisticated and power hungry signal processing solutions are ineffective. Key aspects in the proposed approach include utilizing the spatial properties of physically embedded neural networks and propagating waves of activity therein for information processing, using dimensional collapse of imagery information into amenable TP and the use of asynchronous frames for information binding.
Collapse
Affiliation(s)
- Saeed Afshar
- Bioelectronics and Neurosciences, The MARCS Institute, University of Western Sydney Penrith, NSW, Australia ; School of Electrical Engineering and Telecommunications, The University of New South Wales Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Srinivasa N, Cho Y. Self-organizing spiking neural model for learning fault-tolerant spatio-motor transformations. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2012; 23:1526-1538. [PMID: 24807999 DOI: 10.1109/tnnls.2012.2207738] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we present a spiking neural model that learns spatio-motor transformations. The model is in the form of a multilayered architecture consisting of integrate and fire neurons and synapses that employ spike-timing-dependent plasticity learning rule to enable the learning of such transformations. We developed a simple 2-degree-of-freedom robot-based reaching task which involves the learning of a nonlinear function. Computer simulations demonstrate the capability of such a model for learning the forward and inverse kinematics for such a task and hence to learn spatio-motor transformations. The interesting aspect of the model is its capacity to be tolerant to partial absence of sensory or motor inputs at various stages of learning. We believe that such a model lays the foundation for learning other complex functions and transformations in real-world scenarios.
Collapse
|
14
|
Zhi L, Chen J, Molnar P, Behal A. Weighted least-squares approach for identification of a reduced-order adaptive neuronal model. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2012; 23:834-840. [PMID: 24806132 DOI: 10.1109/tnnls.2012.2187539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This brief is focused on the parameter estimation problem of a second-order adaptive quadratic neuronal model. First, it is shown that the model discontinuities at the spiking instants can be recast as an impulse train driving the system dynamics. Through manipulation of the system dynamics, the membrane voltage can be obtained as a realizable model that is linear in the unknown parameters. This linearly parameterized realizable model is then utilized inside a prediction error-based framework to design a dynamic estimator that allows for rapid estimation of model parameters under a persistently exciting input current injection. Simulation results show the feasibility of this approach to predict multiple neuronal firing patterns. Results using both synthetic data (obtained from a detailed ion-channel-based model) and experimental data (obtained from in vitro embryonic rat motoneurons) suggest directions for further work.
Collapse
|