1
|
Wang J, Ji Z, Zhang H, Wang Z, Meng Q. Synchronization of Generally Uncertain Markovian Inertial Neural Networks With Random Connection Weight Strengths and Image Encryption Application. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:5911-5925. [PMID: 34910641 DOI: 10.1109/tnnls.2021.3131512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article focuses on the synchronization problem of delayed inertial neural networks (INNs) with generally uncertain Markovian jumping and their applications in image encryption. The random connection weight strengths and generally uncertain Markovian are discussed in the INNs model. Compared with most existing INNs models that have constant connection weight strengths, our model is more practical because connection weight strengths of INNs may randomly vary due to the external and internal environment and human factor. The delay-range-dependent synchronization conditions (DRDSCs) could be obtained by adopting the delay-product-term Lyapunov-Krasovskii functional (DPTLKF) and higher order polynomial-based relaxed inequality (HOPRII). In addition, the desired controllers are obtained by solving a set of linear matrix inequalities. Finally, two examples are shown to demonstrate the effectiveness of the proposed results.
Collapse
|
2
|
Lu B, Jiang H, Hu C, Abdurahman A, Liu M. Adaptive pinning cluster synchronization of a stochastic reaction-diffusion complex network. Neural Netw 2023; 166:524-540. [PMID: 37579581 DOI: 10.1016/j.neunet.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
This work aims to achieve cluster synchronization of a complex network by some pinning control strategies. Firstly, the network not only is affected by the reaction-diffusion and the directed coupling phenomena, but also is disturbed by the stochastic noise and Markovian switching. Secondly, switched constant gain pinning, centralized and decentralized adaptive pinning are proposed respectively to realize the cluster synchronization of the considered network. In these adaptive pinning controllers, the control gain and coupling strength can been adjusted automatically while only a part of the nodes are controlled. Thirdly, the target state of cluster synchronization is taken as the average state related to the directed topology of all nodes in the same cluster, and does not need to be given separately as an isolated node. Finally, to verify the theoretical results, some simulations of directed coupled reaction-diffusion neural networks with stochastic noise and Markovian switching are given.
Collapse
Affiliation(s)
- Binglong Lu
- School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou, 466001, Henan, China.
| | - Haijun Jiang
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, Xinjiang, China.
| | - Cheng Hu
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, Xinjiang, China.
| | - Abdujelil Abdurahman
- College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, Xinjiang, China.
| | - Mei Liu
- School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou, 466001, Henan, China.
| |
Collapse
|
3
|
Shen H, Hu X, Wang J, Cao J, Qian W. Non-Fragile H∞ Synchronization for Markov Jump Singularly Perturbed Coupled Neural Networks Subject to Double-Layer Switching Regulation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:2682-2692. [PMID: 34487505 DOI: 10.1109/tnnls.2021.3107607] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This work explores the H∞ synchronization issue for singularly perturbed coupled neural networks (SPCNNs) affected by both nonlinear constraints and gain uncertainties, in which a novel double-layer switching regulation containing Markov chain and persistent dwell-time switching regulation (PDTSR) is used. The first layer of switching regulation is the Markov chain to characterize the switching stochastic properties of the systems suffering from random component failures and sudden environmental disturbances. Meanwhile, PDTSR, as the second-layer switching regulation, is used to depict the variations in the transition probability of the aforementioned Markov chain. For systems under double-layer switching regulation, the purpose of the addressed issue is to design a mode-dependent synchronization controller for the network with the desired controller gains calculated by solving convex optimization problems. As such, new sufficient conditions are established to ensure that the synchronization error systems are mean-square exponentially stable with a specified level of the H∞ performance. Eventually, the solvability and validity of the proposed control scheme are illustrated through a numerical simulation.
Collapse
|
4
|
Guo Y, Huang Z, Yang L, Rao H, Chen H, Xu Y. Pinning synchronization for markovian jump neural networks with uncertain impulsive effects. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Li Z, Chen Z, Fang T, Shen H. Extended dissipativity-based synchronization of Markov jump neural networks subject to partially known transition and mode detection information. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Fixed-time passivity of coupled quaternion-valued neural networks with multiple delayed couplings. Soft comput 2022. [DOI: 10.1007/s00500-022-07500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Chen G, Xia J, Park JH, Shen H, Zhuang G. Sampled-Data Synchronization of Stochastic Markovian Jump Neural Networks With Time-Varying Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3829-3841. [PMID: 33544679 DOI: 10.1109/tnnls.2021.3054615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, sampled-data synchronization problem for stochastic Markovian jump neural networks (SMJNNs) with time-varying delay under aperiodic sampled-data control is considered. By constructing mode-dependent one-sided loop-based Lyapunov functional and mode-dependent two-sided loop-based Lyapunov functional and using the Itô formula, two different stochastic stability criteria are proposed for error SMJNNs with aperiodic sampled data. The slave system can be guaranteed to synchronize with the master system based on the proposed stochastic stability conditions. Furthermore, two corresponding mode-dependent aperiodic sampled-data controllers design methods are presented for error SMJNNs based on these two different stochastic stability criteria, respectively. Finally, two numerical simulation examples are provided to illustrate that the design method of aperiodic sampled-data controller given in this article can effectively stabilize unstable SMJNNs. It is also shown that the mode-dependent two-sided looped-functional method gives less conservative results than the mode-dependent one-sided looped-functional method.
Collapse
|
8
|
Qiu Q, Su H. Finite-Time Output Synchronization of Multiple Weighted Reaction-Diffusion Neural Networks With Adaptive Output Couplings. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; PP:169-181. [PMID: 35552144 DOI: 10.1109/tnnls.2022.3172490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article mainly considers the output synchronization (OS) problem of multiple weighted and adaptive output coupled reaction-diffusion neural networks (RDNNs) without and with coupling delays in finite time. Without coupling delays, an adaptive control law and an output feedback controller are, respectively, proposed to ensure that the multiple weighted and output coupled RDNNs are output synchronized and output synchronized in finite time. With coupling delays, an adaptive coupling weights control scheme and a novel feedback controller are put forward to make the multiple weighted RDNNs with output couplings achieve OS in finite time. Moreover, the finite-time OS is considered in the presence of external disturbances. By the Lyapunov approach, several finite-time OS and OS criteria are given. Finally, two simulation examples are presented to justify the effectiveness of the proposed adaptive control laws and controllers.
Collapse
|
9
|
Mei J, Lu Z, Hu J, Fan Y. Guaranteed Cost Finite-Time Control of Uncertain Coupled Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:481-494. [PMID: 32275628 DOI: 10.1109/tcyb.2020.2971265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article investigates a robust guaranteed cost finite-time control for coupled neural networks with parametric uncertainties. The parameter uncertainties are assumed to be time-varying norm bounded, which appears on the system state and input matrices. The robust guaranteed cost control laws presented in this article include both continuous feedback controllers and intermittent feedback controllers, which were rarely found in the literature. The proposed guaranteed cost finite-time control is designed in terms of a set of linear-matrix inequalities (LMIs) to steer the coupled neural networks to achieve finite-time synchronization with an upper bound of a guaranteed cost function. Furthermore, open-loop optimization problems are formulated to minimize the upper bound of the quadratic cost function and convergence time, it can obtain the optimal guaranteed cost periodically intermittent and continuous feedback control parameters. Finally, the proposed guaranteed cost periodically intermittent and continuous feedback control schemes are verified by simulations.
Collapse
|
10
|
Finite-time synchronization and H∞ synchronization of coupled complex-valued memristive neural networks with and without parameter uncertainty. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.10.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Fixed-time output synchronization of coupled neural networks with output coupling and impulsive effects. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06349-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Wang JL, Wang Q, Wu HN, Huang T. Finite-Time Output Synchronization and H ∞ Output Synchronization of Coupled Neural Networks With Multiple Output Couplings. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:6041-6053. [PMID: 32011276 DOI: 10.1109/tcyb.2020.2964592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates the finite-time output synchronization and H∞ output synchronization problems for coupled neural networks with multiple output couplings (CNNMOC), respectively. By choosing appropriate state feedback controllers, several finite-time output synchronization and H∞ output synchronization criteria are proposed for the CNNMOC. Moreover, a coupling-weight adjustment scheme is also developed to guarantee the finite-time output synchronization and H∞ output synchronization of CNNMOC. Finally, two numerical examples are given to verify the effectiveness of the presented criteria.
Collapse
|
13
|
Fan Y, Chen H. Input-to-State Stability for Stochastic Delay Neural Networks with Markovian Switching. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10605-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Synchronization of Discrete-Time Switched 2-D Systems with Markovian Topology via Fault Quantized Output Control. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Shen H, Xing M, Wu Z, Cao J, Huang T. l₂-l∞ State Estimation for Persistent Dwell-Time Switched Coupled Networks Subject to Round-Robin Protocol. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2002-2014. [PMID: 32497011 DOI: 10.1109/tnnls.2020.2995708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article is concerned with the issue of l2 - l∞ state estimation for nonlinear coupled networks, where the variation of coupling mode is governed by a set of switching signals satisfying a persistent dwell-time property. To solve the problem of data collisions in a constrained communication network, the round-robin protocol, as an important scheduling strategy for orchestrating the transmission order of sensor nodes, is introduced. Redundant channels with signal quantization are used to improve the reliability of data transmission. The main purpose is to determine an estimator that can guarantee the exponential stability in mean square sense and an l2 - l∞ performance level of the estimation error system. Based on the Lyapunov method, sufficient conditions for the addressed problem are established. The desired estimator gains can be obtained by addressing a convex optimization case. The correctness and availability of the developed approach are finally explained via two illustrative examples.
Collapse
|
16
|
Wang Q, Wang JL. Finite-Time Output Synchronization of Undirected and Directed Coupled Neural Networks With Output Coupling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2117-2128. [PMID: 32554332 DOI: 10.1109/tnnls.2020.2997195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article focuses on the finite-time output synchronization problem for undirected and directed coupled neural networks with output coupling (CNNOC). Based on the designed state feedback controllers and some inequality techniques, we present several finite-time output synchronization criteria for these network models. In addition, two kinds of coupling-weight adjustment strategies are also developed to guarantee the finite-time output synchronization of undirected and directed CNNOC. Finally, two numerical examples are also provided to demonstrate the effectiveness of the theoretical results.
Collapse
|
17
|
State Estimation for Markovian Coupled Neural Networks with Multiple Time Delays Via Event-Triggered Mechanism. Neural Process Lett 2021. [DOI: 10.1007/s11063-020-10396-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Xu Y, Wu ZG, Pan YJ. Event-Based Dissipative Filtering of Markovian Jump Neural Networks Subject to Incomplete Measurements and Stochastic Cyber-Attacks. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:1370-1379. [PMID: 31689228 DOI: 10.1109/tcyb.2019.2946838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, the dissipativity-based filtering of the Markovian jump neural networks subject to incomplete measurements and deception attacks is investigated by adopting an event-triggered communication strategy, where the attackers are supposed to occur in a random fashion but obey the Bernoulli distribution. Consider that the information of the system mode is transmitted to the filter over the communication network that is vulnerable to external attacks, which may lead to the undesired performance of the resulting system by injecting malicious information from the attackers. As a result, the filter has difficulty completing information from the original system. Besides, an event-triggered communication mechanism is introduced to reduce the communication frequency between data transmission due to the limited network resources, and different triggering conditions corresponding to different jump modes are developed. Then, based on the above considerations, the sufficient condition is derived to ensure the stochastic stability and dissipativity of the resulting augmented system although the deception attacks and incomplete information exist. A numerical simulated example is provided to verify the theoretical analysis.
Collapse
|
19
|
Wang JL, Qiu SH, Chen WZ, Wu HN, Huang T. Recent Advances on Dynamical Behaviors of Coupled Neural Networks With and Without Reaction-Diffusion Terms. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:5231-5244. [PMID: 32175875 DOI: 10.1109/tnnls.2020.2964843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, the dynamical behaviors of coupled neural networks (CNNs) with and without reaction-diffusion terms have been widely researched due to their successful applications in different fields. This article introduces some important and interesting results on this topic. First, synchronization, passivity, and stability analysis results for various CNNs with and without reaction-diffusion terms are summarized, including the results for impulsive, time-varying, time-invariant, uncertain, fuzzy, and stochastic network models. In addition, some control methods, such as sampled-data control, pinning control, impulsive control, state feedback control, and adaptive control, have been used to realize the desired dynamical behaviors in CNNs with and without reaction-diffusion terms. In this article, these methods are summarized. Finally, some challenging and interesting problems deserving of further investigation are discussed.
Collapse
|
20
|
Rao H, Guo Y, Xu Y, Liu C, Lu R. Nonfragile Finite-Time Synchronization for Coupled Neural Networks With Impulsive Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:4980-4989. [PMID: 32584771 DOI: 10.1109/tnnls.2020.3001196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article addresses the problem of the average stochastic finite-time synchronization (ASFTS) for a set of coupled neural networks (NNs) with energy-bounded noises. Due to the channel capacity constraint, the impulsive approach is introduced so as to cut down the communication times among the leader NNs and the follower NNs. Then, a nonfragile controller is designed to improve the robustness of the controller with randomly occurred uncertainty. The sufficient conditions that guarantee the ASFTS of the coupled NNs and the leader NNs are achieved. The boundary of the synchronization error is also obtained by constructing the monotonic increasing functions. Finally, the controller gains are given based on the derived conditions, and their effectiveness is illustrated by a numerical example.
Collapse
|
21
|
Rao H, Xu Y, Peng H, Lu R, Su CY. Quasi-Synchronization of Time Delay Markovian Jump Neural Networks With Impulsive-Driven Transmission and Fading Channels. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4121-4131. [PMID: 31670689 DOI: 10.1109/tcyb.2019.2941582] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The problem of quasi-synchronization (QS) for the Markovian jump master-slave neural networks with time-varying delay is studied in this article, where the mismatch parameters and unreliable communication channels are considered as well. A set of stochastic variables with different expectations are used to describe the fading phenomena of parallel communication channels. An impulsive-driven transmission strategy is designed to reduce the communication load, and a corresponding impulsive controller is then designed. A synchronization error system (SES) is obtained, and a convex QS condition is established for the SES. A linear matrix inequality-based iterative algorithm is proposed to reduce the bound of the SES, and the corresponding controller gains are calculated. A numerical example is provided to illustrate the effectiveness of the developed result.
Collapse
|
22
|
Yang X, Li X, Lu J, Cheng Z. Synchronization of Time-Delayed Complex Networks With Switching Topology Via Hybrid Actuator Fault and Impulsive Effects Control. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4043-4052. [PMID: 31722503 DOI: 10.1109/tcyb.2019.2938217] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates global exponential synchronization almost surely (GES a.s.) of complex networks (CNs) with node delay and switching topology. By introducing transition probability (TP) and mode-dependent average dwell time (MDADT) to the switching signal, the considered model is more practical than the systems with average dwell-time (ADT) switching. Controllers with both impulsive effects and actuator fault feedback are considered. New analytical techniques are developed to obtain sufficient conditions to guarantee the GES a.s. Different from the existing results on the synchronization of switched systems, our results show that the GES a.s. can still be achieved even in the case that the upper bound of the dwell time (DT) of uncontrolled nodes is very large and the lower bound of the DT of controlled nodes is very small. Numerical examples demonstrate the effectiveness and the merits of the theoretical analysis.
Collapse
|
23
|
Synchronization criteria for quaternion-valued coupled neural networks with impulses. Neural Netw 2020; 128:150-157. [DOI: 10.1016/j.neunet.2020.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 11/24/2022]
|
24
|
Yue CX, Wang L, Hu X, Tang HA, Duan S. Pinning control for passivity and synchronization of coupled memristive reaction–diffusion neural networks with time-varying delay. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.09.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Huang Y, Hou J, Yang E. General decay lag anti-synchronization of multi-weighted delayed coupled neural networks with reaction–diffusion terms. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2019.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Wan P, Sun D, Zhao M. Finite-time and fixed-time anti-synchronization of Markovian neural networks with stochastic disturbances via switching control. Neural Netw 2019; 123:1-11. [PMID: 31812925 DOI: 10.1016/j.neunet.2019.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022]
Abstract
This paper proposes a unified theoretical framework to study the problem of finite/fixed-time drive-response anti-synchronization for a class of Markovian stochastic neural networks. State feedback switching controllers without the sign function are designed to achieve the finite/fixed-time anti-synchronization of the addressed systems. Compared with the existing synchronization criteria, our results indicate that the controllers via the switching control without the sign function are given with less conservativeness, and the controllers without any sign function can deal with the chattering problem. By employing Lyapunov functional method and properties of the Weiner process, several finite/fixed-time synchronization criteria are presented and the corresponding settling times are calculated as well. Finally, three numerical examples are provided to illustrate the effectiveness of the theoretical results.
Collapse
Affiliation(s)
- Peng Wan
- Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China; School of Automation, Chongqing University, Chongqing 400044, China
| | - Dihua Sun
- Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China; School of Automation, Chongqing University, Chongqing 400044, China.
| | - Min Zhao
- Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China; School of Automation, Chongqing University, Chongqing 400044, China
| |
Collapse
|
27
|
Finite-time passivity of multiple weighted coupled uncertain neural networks with directed and undirected topologies. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Extended $$H_{\infty }$$ Synchronization Control for Switched Neural Networks with Multi Quantization Densities Based on a Persistent Dwell-Time Approach. Neural Process Lett 2019. [DOI: 10.1007/s11063-019-10064-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Resilient state estimation for nonlinear complex networks with time-delay under stochastic communication protocol. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.07.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
New stochastic synchronization criteria for fuzzy Markovian hybrid neural networks with random coupling strengths. Neural Comput Appl 2019. [DOI: 10.1007/s00521-017-3043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Huang C, Wang W, Cao J, Lu J. Synchronization-based passivity of partially coupled neural networks with event-triggered communication. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.08.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Zhang W, Yang X, Xu C, Feng J, Li C. Finite-Time Synchronization of Discontinuous Neural Networks With Delays and Mismatched Parameters. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:3761-3771. [PMID: 28910780 DOI: 10.1109/tnnls.2017.2740431] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper investigates the problem of finite-time drive-response synchronization for a class of neural networks with discontinuous activations, time-varying discrete and infinite-time distributed delays, and mismatched parameters. In order to cope with the difficulties induced by discontinuous activations, time delays, as well as mismatched parameters simultaneously, new 1-norm-based analytical techniques are developed. Both state feedback and adaptive controllers with and without the sign function are designed. Based on differential inclusion theory and Lyapunov functional method, several sufficient conditions on the finite-time synchronization are obtained. Our results show that the controllers with a sign function can reduce the conservativeness of control gains and the controllers without a sign function can overcome the chattering phenomenon. Numerical examples are given to show the effectiveness of the theoretical analysis.
Collapse
|
33
|
Multi-Delay-Dependent Exponential Synchronization for Neutral-Type Stochastic Complex Networks with Markovian Jump Parameters via Adaptive Control. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9891-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Dong H, Hou N, Wang Z, Ren W. Variance-Constrained State Estimation for Complex Networks With Randomly Varying Topologies. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:2757-2768. [PMID: 28541916 DOI: 10.1109/tnnls.2017.2700331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper investigates the variance-constrained state estimation problem for a class of nonlinear time-varying complex networks with randomly varying topologies, stochastic inner coupling, and measurement quantization. A Kronecker delta function and Markovian jumping parameters are utilized to describe the random changes of network topologies. A Gaussian random variable is introduced to model the stochastic disturbances in the inner coupling of complex networks. As a kind of incomplete measurements, measurement quantization is taken into consideration so as to account for the signal distortion phenomenon in the transmission process. Stochastic nonlinearities with known statistical characteristics are utilized to describe the stochastic evolution of the complex networks. We aim to design a finite-horizon estimator, such that in the simultaneous presence of quantized measurements and stochastic inner coupling, the prescribed variance constraints on the estimation error and the desired performance requirements are guaranteed over a finite horizon. Sufficient conditions are established by means of a series of recursive linear matrix inequalities, and subsequently, the estimator gain parameters are derived. A simulation example is presented to illustrate the effectiveness and applicability of the proposed estimator design algorithm.
Collapse
|
35
|
Wang X, Su H, Chen MZQ, Wang X. Observer-Based Robust Coordinated Control of Multiagent Systems With Input Saturation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:1933-1946. [PMID: 28422670 DOI: 10.1109/tnnls.2017.2690322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper addresses the robust semiglobal coordinated control of multiple-input multiple-output multiagent systems with input saturation together with dead zone and input additive disturbance. Observer-based coordinated control protocol is constructed, by combining the parameterized low-and-high-gain feedback technique and the high-gain observer design approach. It is shown that, under some mild assumptions on agents' intrinsic dynamics, the robust semiglobal consensus or robust semiglobal swarm can be approached for undirected connected multiagent systems. Then, specific guidelines on the selection of the low-gain parameter, the high-gain parameter, and the high-gain observer gain have been provided. At last, numerical simulations are presented to illustrate the theoretical results.
Collapse
|
36
|
Maharajan C, Raja R, Cao J, Ravi G, Rajchakit G. Global exponential stability of Markovian jumping stochastic impulsive uncertain BAM neural networks with leakage, mixed time delays, and α-inverse Hölder activation functions. ADVANCES IN DIFFERENCE EQUATIONS 2018; 2018:113. [PMID: 29770144 PMCID: PMC5942391 DOI: 10.1186/s13662-018-1553-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
This paper concerns the problem of enhanced results on robust finite time passivity for uncertain discrete time Markovian jumping BAM delayed neural networks with leakage delay. By implementing a proper Lyapunov-Krasovskii functional candidate, reciprocally convex combination method, and linear matrix inequality technique, we derive several sufficient conditions for varying the passivity of discrete time BAM neural networks. Further, some sufficient conditions for finite time boundedness and passivity for uncertainties are proposed by employing zero inequalities. Finally, the enhancement of the feasible region of the proposed criteria is shown via numerical examples with simulation to illustrate the applicability and usefulness of the proposed method.
Collapse
Affiliation(s)
- C. Maharajan
- Department of Mathematics, Alagappa University, Karaikudi, India
| | - R. Raja
- Ramanujan Centre for Higher Mathematics, Alagappa University, Karaikudi, India
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing, China
| | - G. Ravi
- Dean Industry and Consultancy, Alagappa University, Karaikudi, India
| | - G. Rajchakit
- Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, Thailand
| |
Collapse
|
37
|
Yuan M, Luo X, Wang W, Li L, Peng H. Pinning Synchronization of Coupled Memristive Recurrent Neural Networks with Mixed Time-Varying Delays and Perturbations. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9811-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Stochastic synchronization for an array of hybrid neural networks with random coupling strengths and unbounded distributed delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.07.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Li W, Jia Y, Du J, Fu X. State estimation for nonlinearly coupled complex networks with application to multi-target tracking. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Wei T, Wang Y, Wang L. Robust Exponential Synchronization for Stochastic Delayed Neural Networks with Reaction–Diffusion Terms and Markovian Jumping Parameters. Neural Process Lett 2017. [DOI: 10.1007/s11063-017-9756-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Wang J, Zhang H, Wang Z, Liu Z. Sampled-Data Synchronization of Markovian Coupled Neural Networks With Mode Delays Based on Mode-Dependent LKF. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2626-2637. [PMID: 28113649 DOI: 10.1109/tnnls.2016.2599263] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper investigates sampled-data synchronization problem of Markovian coupled neural networks with mode-dependent interval time-varying delays and aperiodic sampling intervals based on an enhanced input delay approach. A mode-dependent augmented Lyapunov-Krasovskii functional (LKF) is utilized, which makes the LKF matrices mode-dependent as much as possible. By applying an extended Jensen's integral inequality and Wirtinger's inequality, new delay-dependent synchronization criteria are obtained, which fully utilizes the upper bound on variable sampling interval and the sawtooth structure information of varying input delay. In addition, the desired stochastic sampled-data controllers can be obtained by solving a set of linear matrix inequalities. Finally, two examples are provided to demonstrate the feasibility of the proposed method.This paper investigates sampled-data synchronization problem of Markovian coupled neural networks with mode-dependent interval time-varying delays and aperiodic sampling intervals based on an enhanced input delay approach. A mode-dependent augmented Lyapunov-Krasovskii functional (LKF) is utilized, which makes the LKF matrices mode-dependent as much as possible. By applying an extended Jensen's integral inequality and Wirtinger's inequality, new delay-dependent synchronization criteria are obtained, which fully utilizes the upper bound on variable sampling interval and the sawtooth structure information of varying input delay. In addition, the desired stochastic sampled-data controllers can be obtained by solving a set of linear matrix inequalities. Finally, two examples are provided to demonstrate the feasibility of the proposed method.
Collapse
Affiliation(s)
- Junyi Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| | - Huaguang Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| | - Zhanshan Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| | - Zhenwei Liu
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
42
|
Wang J, Zhang H, Wang Z, Gao DW. Finite-Time Synchronization of Coupled Hierarchical Hybrid Neural Networks With Time-Varying Delays. IEEE TRANSACTIONS ON CYBERNETICS 2017; 47:2995-3004. [PMID: 28422675 DOI: 10.1109/tcyb.2017.2688395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper is concerned with the finite-time synchronization problem of coupled hierarchical hybrid delayed neural networks. This coupled hierarchical hybrid neural networks consist of a higher level switching and a lower level Markovian jumping. The time-varying delays are dependent on not only switching signal but also jumping mode. By using a less conservative weighted integral inequality and stochastic multiple Lyapunov-Krasovskii functional, new finite-time synchronization criteria are obtained, which makes the state trajectories be kept within the prescribed bound in a time interval. Finally, an example is proposed to demonstrate the effectiveness of the obtained results.
Collapse
|
43
|
Chen H, Shi P, Lim CC. Exponential Synchronization for Markovian Stochastic Coupled Neural Networks of Neutral-Type via Adaptive Feedback Control. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:1618-1632. [PMID: 27093709 DOI: 10.1109/tnnls.2016.2546962] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we investigate the adaptive exponential synchronization in both the mean square and the almost sure senses for an array of N identical Markovian stochastic coupled neural networks of neutral-type with time-varying delay and random coupling strength. The generalized Lyapunov theorem of the exponential stability in the mean square for the neutral stochastic Markov system with the time-varying delay is first established. The time-varying delay in the system is assumed to be a bounded measurable function. Then, sufficient conditions to guarantee the exponential synchronization in the mean square for the underlying system are developed under an adaptive feedback controller, which are given in terms of the M -matrix and the algebraic inequalities. Under the same conditions, the almost sure exponential synchronization is also presented. A numerical example is given to show the effectiveness and potential of the proposed theoretical results.
Collapse
|
44
|
Ren J, Liu X, Zhu H, Zhong S. Passivity analysis of neural networks with two different Markovian jumping parameters and mixed time delays. ISA TRANSACTIONS 2017; 69:102-121. [PMID: 28434631 DOI: 10.1016/j.isatra.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 02/16/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
This paper studies the problem of passivity analysis for neural networks with two different Markovian jumping parameters and mixed time delays utilizing some integral inequalities. The integral inequalities produce sharper bounds than what the Jensen's inequality produces, consequently, better results are obtained. The Markovian jumping parameters in connection weight matrices and discrete delay are assumed to be different in the system model. By constructing a new appropriate Lyapunov-Krasovskii functional (LKF), some sufficient conditions are established which guarantee the passivity of the proposed model. Numerical examples are given to show the less conservatism and effectiveness of the proposed method.
Collapse
Affiliation(s)
- Jiaojiao Ren
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China; Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | - Xinzhi Liu
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | - Hong Zhu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China.
| | - Shouming Zhong
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu611731, PR China.
| |
Collapse
|
45
|
Non-fragile mixed H∞ and passive synchronization of Markov jump neural networks with mixed time-varying delays and randomly occurring controller gain fluctuation. PLoS One 2017; 12:e0175676. [PMID: 28410394 PMCID: PMC5391947 DOI: 10.1371/journal.pone.0175676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
This paper studies the non-fragile mixed H∞ and passive synchronization problem for Markov jump neural networks. The randomly occurring controller gain fluctuation phenomenon is investigated for non-fragile strategy. Moreover, the mixed time-varying delays composed of discrete and distributed delays are considered. By employing stochastic stability theory, synchronization criteria are developed for the Markov jump neural networks. On the basis of the derived criteria, the non-fragile synchronization controller is designed. Finally, an illustrative example is presented to demonstrate the validity of the control approach.
Collapse
|
46
|
Li W, Jia Y, Du J. Recursive state estimation for complex networks with random coupling strength. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.08.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Liu X, Su H, Chen MZQ. A Switching Approach to Designing Finite-Time Synchronization Controllers of Coupled Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:471-482. [PMID: 26186796 DOI: 10.1109/tnnls.2015.2448549] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper is concerned with the finite-time synchronization issue of nonlinear coupled neural networks by designing a new switching pinning controller. For the fixed network topology and control strength, the newly designed controller could optimize the synchronization time by regulating a parameter α (0 ≤ α < 1). The control law presented in this paper covers both continuous controllers and discontinuous ones, which were studied separately in the past. Some criteria are discussed in detail on how to shorten the synchronization time for the strongly connected networks. Finally, the results are generalized to any network topologies containing a directed spanning tree, and one numerical example is given to demonstrate the effectiveness of the theoretical results.
Collapse
|
48
|
Synchronization of switched complex dynamical networks with non-synchronized subnetworks and stochastic disturbances. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.05.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Rakkiyappan R, Dharani S, Cao J. Synchronization of Neural Networks With Control Packet Loss and Time-Varying Delay via Stochastic Sampled-Data Controller. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:3215-3226. [PMID: 25966486 DOI: 10.1109/tnnls.2015.2425881] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper addresses the problem of exponential synchronization of neural networks with time-varying delays. A sampled-data controller with stochastically varying sampling intervals is considered. The novelty of this paper lies in the fact that the control packet loss from the controller to the actuator is considered, which may occur in many real-world situations. Sufficient conditions for the exponential synchronization in the mean square sense are derived in terms of linear matrix inequalities (LMIs) by constructing a proper Lyapunov-Krasovskii functional that involves more information about the delay bounds and by employing some inequality techniques. Moreover, the obtained LMIs can be easily checked for their feasibility through any of the available MATLAB tool boxes. Numerical examples are provided to validate the theoretical results.
Collapse
|
50
|
Zhang H, Wang J, Wang Z, Liang H. Mode-Dependent Stochastic Synchronization for Markovian Coupled Neural Networks With Time-Varying Mode-Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:2621-2634. [PMID: 25616083 DOI: 10.1109/tnnls.2014.2387885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper investigates the stochastic synchronization problem for Markovian hybrid coupled neural networks with interval time-varying mode-delays and random coupling strengths. The coupling strengths are mutually independent random variables and the coupling configuration matrices are nonsymmetric. A mode-dependent augmented Lyapunov-Krasovskii functional (LKF) is proposed, where some terms involving triple or quadruple integrals are considered, which makes the LKF matrices mode-dependent as much as possible. This gives significant improvement in the synchronization criteria, i.e., less conservative results can be obtained. In addition, by applying an extended Jensen's integral inequality and the properties of random variables, new delay-dependent synchronization criteria are derived. The obtained criteria depend not only on upper and lower bounds of mode-delays but also on mathematical expectations and variances of the random coupling strengths. Finally, two numerical examples are provided to demonstrate the feasibility of the proposed results.
Collapse
|