1
|
Chen Z, Wang X, Pang N, Shi Y. Adaptive Resilient Neural Control of Uncertain Time-Delay Nonlinear CPSs with Full-State Constraints under Deception Attacks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:900. [PMID: 37372244 DOI: 10.3390/e25060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
This paper focuses on the adaptive control problem of a class of uncertain time-delay nonlinear cyber-physical systems (CPSs) with both unknown time-varying deception attacks and full-state constraints. Since the sensors are disturbed by external deception attacks making the system state variables unknown, this paper first establishes a new backstepping control strategy based on compromised variables and uses dynamic surface techniques to solve the disadvantages of the huge computational effort of the backstepping technique, and then establishes attack compensators to mitigate the impact of unknown attack signals on the control performance. Second, the barrier Lyapunov function (BLF) is introduced to restrict the state variables. In addition, the unknown nonlinear terms of the system are approximated using radial basis function (RBF) neural networks, and the Lyapunov-Krasovskii function (LKF) is introduced to eliminate the influence of the unknown time-delay terms. Finally, an adaptive resilient controller is designed to ensure that the system state variables converge and satisfy the predefined state constraints, all signals of the closed-loop system are semi-globally uniformly ultimately bounded under the premise that the error variables converge to an adjustable neighborhood of origin. The numerical simulation experiments verify the validity of the theoretical results.
Collapse
Affiliation(s)
- Zhihao Chen
- WESTA College, Southwest University, Chongqing 400700, China
| | - Xin Wang
- College of Electronic and Information Engineering, Southwest University, Chongqing 400700, China
| | - Ning Pang
- WESTA College, Southwest University, Chongqing 400700, China
| | - Yushan Shi
- WESTA College, Southwest University, Chongqing 400700, China
| |
Collapse
|
2
|
Mehrafrooz A, He F, Lalbakhsh A. Introducing a Novel Model-Free Multivariable Adaptive Neural Network Controller for Square MIMO Systems. SENSORS (BASEL, SWITZERLAND) 2022; 22:2089. [PMID: 35336257 PMCID: PMC8948623 DOI: 10.3390/s22062089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this study, a novel Multivariable Adaptive Neural Network Controller (MANNC) is developed for coupled model-free n-input n-output systems. The learning algorithm of the proposed controller does not rely on the model of a system and uses only the history of the system inputs and outputs. The system is considered as a 'black box' with no pre-knowledge of its internal structure. By online monitoring and possessing the system inputs and outputs, the parameters of the controller are adjusted. Using the accumulated gradient of the system error along with the Lyapunov stability analysis, the weights' adjustment convergence of the controller can be observed, and an optimal training number of the controller can be selected. The Lyapunov stability of the system is checked during the entire weight training process to enable the controller to handle any possible nonlinearities of the system. The effectiveness of the MANNC in controlling nonlinear square multiple-input multiple-output (MIMO) systems is demonstrated via three simulation studies covering the cases of a time-invariant nonlinear MIMO system, a time-variant nonlinear MIMO system, and a hybrid MIMO system, respectively. In each case, the performance of the MANNC is compared with that of a properly selected existing counterpart. Simulation results demonstrate that the proposed MANNC is capable of controlling various types of square MIMO systems with much improved performance over its existing counterpart. The unique properties of the MANNC will make it a suitable candidate for many industrial applications.
Collapse
Affiliation(s)
- Arash Mehrafrooz
- Macquarie University College, Macquarie University, Sydney, NSW 2113, Australia;
| | - Fangpo He
- Advanced Control Systems Research Group, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Ali Lalbakhsh
- School of Engineering, Macquarie University, Ryde, NSW 2109, Australia
- School of Electrical & Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Naeem M, De Pietro G, Coronato A. Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems. SENSORS 2021; 22:s22010309. [PMID: 35009848 PMCID: PMC8749942 DOI: 10.3390/s22010309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/02/2023]
Abstract
The current wireless communication infrastructure has to face exponential development in mobile traffic size, which demands high data rate, reliability, and low latency. MIMO systems and their variants (i.e., Multi-User MIMO and Massive MIMO) are the most promising 5G wireless communication systems technology due to their high system throughput and data rate. However, the most significant challenges in MIMO communication are substantial problems in exploiting the multiple-antenna and computational complexity. The recent success of RL and DL introduces novel and powerful tools that mitigate issues in MIMO communication systems. This article focuses on RL and DL techniques for MIMO systems by presenting a comprehensive review on the integration between the two areas. We first briefly provide the necessary background to RL, DL, and MIMO. Second, potential RL and DL applications for different MIMO issues, such as detection, classification, and compression; channel estimation; positioning, sensing, and localization; CSI acquisition and feedback, security, and robustness; mmWave communication and resource allocation, are presented.
Collapse
|
4
|
Ren Y, Zhao Z, Zhang C, Yang Q, Hong KS. Adaptive Neural-Network Boundary Control for a Flexible Manipulator With Input Constraints and Model Uncertainties. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:4796-4807. [PMID: 33001815 DOI: 10.1109/tcyb.2020.3021069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article develops an adaptive neural-network (NN) boundary control scheme for a flexible manipulator subject to input constraints, model uncertainties, and external disturbances. First, a radial basis function NN method is utilized to tackle the unknown input saturations, dead zones, and model uncertainties. Then, based on the backstepping approach, two adaptive NN boundary controllers with update laws are employed to stabilize the like-position loop subsystem and like-posture loop subsystem, respectively. With the introduced control laws, the uniform ultimate boundedness of the deflection and angle tracking errors for the flexible manipulator are guaranteed. Finally, the control performance of the developed control technique is examined by a numerical example.
Collapse
|
5
|
Practical Control of a Cold Milling Machine using an Adaptive PID Controller. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents a supervised Hebb learning single neuron adaptive proportional-integral-derivative (PID) controller for the power control of a cold milling machine. The proposed controller aims to overcome the deficiency of the current power control algorithm, and to achieve as high an output power as possible for the cold milling machine. The control process and system model are established and presented to provide the insight and guidance to the controller design and analysis. The adaptive PID controller is developed using a supervised Hebb learning single neuron method with detailed algorithm and structure analysis. The field test is performed to validate the proposed single neuron adaptive PID control for the power control. In the test, the 8 cm-depth milling is conducted on a cement concrete pavement in which the cement is not well-distributed. The test results show that when the machine speed is adjusted by the machine itself or manually without the adaptive power control system, the machine is often overloaded or underloaded, and the average work speed is 2.4m/min. However, when the adaptive control system is implemented on the machine, it works very close to its rated work condition during its work process. With the developed controller, the machine work speed is adjusted in time to the load variation and uncertain dynamics. The average machine work speed can reach up to 2.766 m/min, which is 15.25% higher than the wok speed of the machine without an adaptive power control system.
Collapse
|
6
|
Li J, Yang Q, Fan B, Sun Y. Robust State/Output-Feedback Control of Coaxial-Rotor MAVs Based on Adaptive NN Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:3547-3557. [PMID: 31095501 DOI: 10.1109/tnnls.2019.2911649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The coaxial-rotor micro-aerial vehicles (CRMAVs) have been proven to be a powerful tool in forming small and agile manned-unmanned hybrid applications. However, the operation of them is usually subject to unpredictable time-varying aerodynamic disturbances and model uncertainties. In this paper, an adaptive robust controller based on a neural network (NN) approach is proposed to reject such perturbations and track both the desired position and orientation trajectories. A complete dynamic model of a CRMAV is first constructed. When all system states are assumed to be available, an NN-based state-feedback controller is proposed through feedback linearization and Lyapunov analysis. Furthermore, to overcome the practical challenge that certain states are not measurable, a high-gain observer is introduced to estimate the unavailable states, and then, an output-feedback controller is developed. Rigorous theoretical analysis verifies the stability of the entire closed-loop system. In addition, extensive simulation studies are conducted to validate the feasibility of the proposed scheme.
Collapse
|
7
|
Li D, Chen CLP, Liu YJ, Tong S. Neural Network Controller Design for a Class of Nonlinear Delayed Systems With Time-Varying Full-State Constraints. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2625-2636. [PMID: 30624233 DOI: 10.1109/tnnls.2018.2886023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper proposes an adaptive neural control method for a class of nonlinear time-varying delayed systems with time-varying full-state constraints. To address the problems of the time-varying full-state constraints and time-varying delays in a unified framework, an adaptive neural control method is investigated for the first time. The problems of time delay and constraint are the main factors of limiting the system performance severely and even cause system instability. The effect of unknown time-varying delays is eliminated by using appropriate Lyapunov-Krasovskii functionals. In addition, the constant constraint is the only special case of time-varying constraint which leads to more complex and difficult tasks. To guarantee the full state always within the time-varying constrained interval, the time-varying asymmetric barrier Lyapunov function is employed. Finally, two simulation examples are given to confirm the effectiveness of the presented control scheme.
Collapse
|
8
|
Liu YJ, Li S, Tong S, Chen CLP. Adaptive Reinforcement Learning Control Based on Neural Approximation for Nonlinear Discrete-Time Systems With Unknown Nonaffine Dead-Zone Input. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:295-305. [PMID: 29994726 DOI: 10.1109/tnnls.2018.2844165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, an optimal control algorithm is designed for uncertain nonlinear systems in discrete-time, which are in nonaffine form and with unknown dead-zone. The main contributions of this paper are that an optimal control algorithm is for the first time framed in this paper for nonlinear systems with nonaffine dead-zone, and the adaptive parameter law for dead-zone is calculated by using the gradient rules. The mean value theory is employed to deal with the nonaffine dead-zone input and the implicit function theory based on reinforcement learning is appropriately introduced to find an unknown ideal controller which is approximated by using the action network. Other neural networks are taken as the critic networks to approximate the strategic utility functions. Based on the Lyapunov stability analysis theory, we can prove the stability of systems, i.e., the optimal control laws can guarantee that all the signals in the closed-loop system are bounded and the tracking errors are converged to a small compact set. Finally, two simulation examples demonstrate the effectiveness of the design algorithm.
Collapse
|
9
|
Li J, Yang Q, Sun Y. Robust State and Output Feedback Control of Launched MAVs with Unknown Varying External Loads. J INTELL ROBOT SYST 2018. [DOI: 10.1007/s10846-018-0774-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Li DP, Li DJ, Liu YJ, Tong S, Chen CLP. Approximation-Based Adaptive Neural Tracking Control of Nonlinear MIMO Unknown Time-Varying Delay Systems With Full State Constraints. IEEE TRANSACTIONS ON CYBERNETICS 2017; 47:3100-3109. [PMID: 28613190 DOI: 10.1109/tcyb.2017.2707178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper deals with the tracking control problem for a class of nonlinear multiple input multiple output unknown time-varying delay systems with full state constraints. To overcome the challenges which cause by the appearances of the unknown time-varying delays and full-state constraints simultaneously in the systems, an adaptive control method is presented for such systems for the first time. The appropriate Lyapunov-Krasovskii functions and a separation technique are employed to eliminate the effect of unknown time-varying delays. The barrier Lyapunov functions are employed to prevent the violation of the full state constraints. The singular problems are dealt with by introducing the signal function. Finally, it is proven that the proposed method can both guarantee the good tracking performance of the systems output, all states are remained in the constrained interval and all the closed-loop signals are bounded in the design process based on choosing appropriate design parameters. The practicability of the proposed control technique is demonstrated by a simulation study in this paper.
Collapse
|
11
|
Liu YJ, Gao Y, Tong S, Chen CLP. A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:139-150. [PMID: 26353383 DOI: 10.1109/tnnls.2015.2471262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example.
Collapse
|
12
|
Liu YJ, Tang L, Tong S, Chen CLP, Li DJ. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:165-176. [PMID: 25438326 DOI: 10.1109/tnnls.2014.2360724] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.
Collapse
|
13
|
Advanced portable remote monitoring system for the regulation of treadmill running exercises. Artif Intell Med 2014; 61:119-26. [PMID: 24877618 DOI: 10.1016/j.artmed.2014.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
|
14
|
Xu H, Jagannathan S. Stochastic optimal controller design for uncertain nonlinear networked control system via neuro dynamic programming. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2013; 24:471-484. [PMID: 24808319 DOI: 10.1109/tnnls.2012.2234133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The stochastic optimal controller design for the nonlinear networked control system (NNCS) with uncertain system dynamics is a challenging problem due to the presence of both system nonlinearities and communication network imperfections, such as random delays and packet losses, which are not unknown a priori. In the recent literature, neuro dynamic programming (NDP) techniques, based on value and policy iterations, have been widely reported to solve the optimal control of general affine nonlinear systems. However, for realtime control, value and policy iterations-based methodology are not suitable and time-based NDP techniques are preferred. In addition, output feedback-based controller designs are preferred for implementation. Therefore, in this paper, a novel NNCS representation incorporating the system uncertainties and network imperfections is introduced first by using input and output measurements for facilitating output feedback. Then, an online neural network (NN) identifier is introduced to estimate the control coefficient matrix, which is subsequently utilized for the controller design. Subsequently, the critic and action NNs are employed along with the NN identifier to determine the forward-in-time, time-based stochastic optimal control of NNCS without using value and policy iterations. Here, the value function and control inputs are updated once a sampling instant. By using novel NN weight update laws, Lyapunov theory is used to show that all the closed-loop signals and NN weights are uniformly ultimately bounded in the mean while the approximated control input converges close to its target value with time. Simulation results are included to show the effectiveness of the proposed scheme.
Collapse
|