1
|
Yan Z, Sun W, Guo W, Li B, Wen S, Cao J. Complete Stability of Delayed Recurrent Neural Networks With New Wave-Type Activation Functions. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:6584-6596. [PMID: 38709607 DOI: 10.1109/tnnls.2024.3394854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Activation functions have a significant effect on the dynamics of neural networks (NNs). This study proposes new nonmonotonic wave-type activation functions and examines the complete stability of delayed recurrent NNs (DRNNs) with these activation functions. Using the geometrical properties of the wave-type activation function and subsequent iteration scheme, sufficient conditions are provided to ensure that a DRNN with n neurons has exactly $(2m + 3)^{n}$ equilibria, where $(m + 2)^{n}$ equilibria are locally exponentially stable, the remainder $(2m + 3)^{n} - (m + 2)^{n}$ equilibria are unstable, and a positive integer m is related to wave-type activation functions. Furthermore, the DRNN with the proposed activation function is completely stable. Compared with the previous literature, the total number of equilibria and the stable equilibria significantly increase, thereby enhancing the memory storage capacity of DRNN. Finally, several examples are presented to demonstrate our proposed results.
Collapse
|
2
|
Chen X, Lin D, Li Z, Li W. Iterative neural networks for improving memory capacity. Neural Netw 2025; 182:106936. [PMID: 39608148 DOI: 10.1016/j.neunet.2024.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
In recent years, the problem of the multistability of neural networks has been studied extensively. From the research results obtained, the number of stable equilibrium points depends only on a power form of the network dimension. However, in practical applications, the number of stable equilibrium points needed is often not expressed in power form. Therefore, can we determine an appropriate activation function so that the neural network has exactly the required number of stable equilibrium points? This paper provides a new way to study this problem by means of an iteration method. The necessary activation function is constructed by an appropriate iteration method, and the neural network model is established. Based on the mathematical theories of matrix analysis and functional analysis and on the inequality method, the number and distribution of the network equilibrium points are determined by dividing the state space reasonably, and some multistability criteria that are related to the number of iterations and are independent of the network dimension are established.
Collapse
Affiliation(s)
- Xiaofeng Chen
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, 400074, China; Research Center on Neural Networks and Machine Learning, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Dongyuan Lin
- College of Electronic and Information Engineering, Southwest University, Chongqing, 400715, China.
| | - Zhongshan Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, 30302, GA, USA.
| | - Weikai Li
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
3
|
Cao B, Nie X, Zheng WX, Cao J. Multistability of State-Dependent Switched Fractional-Order Hopfield Neural Networks With Mexican-Hat Activation Function and Its Application in Associative Memories. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:1213-1227. [PMID: 38048243 DOI: 10.1109/tnnls.2023.3334871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The multistability and its application in associative memories are investigated in this article for state-dependent switched fractional-order Hopfield neural networks (FOHNNs) with Mexican-hat activation function (AF). Based on the Brouwer's fixed point theorem, the contraction mapping principle and the theory of fractional-order differential equations, some sufficient conditions are established to ensure the existence, exact existence and local stability of multiple equilibrium points (EPs) in the sense of Filippov, in which the positively invariant sets are also estimated. In particular, the analysis concerning the existence and stability of EPs is quite different from those in the literature because the considered system involves both fractional-order derivative and state-dependent switching. It should be pointed out that, compared with the results in the literature, the total number of EPs and stable EPs increases from and to and , respectively, where with being the system dimension. Besides, a new method is designed to realize associative memories for grayscale and color images by introducing a deviation vector, which, in comparison with the existing works, not only improves the utilization efficiency of EPs, but also reduces the system dimension and computational burden. Finally, the effectiveness of the theoretical results is illustrated by four numerical simulations.
Collapse
|
4
|
Wang J, Zhu S, Mu C, Liu X, Wen S. Unified analysis on multistablity of fraction-order multidimensional-valued memristive neural networks. Neural Netw 2024; 179:106498. [PMID: 38986183 DOI: 10.1016/j.neunet.2024.106498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
This article provides a unified analysis of the multistability of fraction-order multidimensional-valued memristive neural networks (FOMVMNNs) with unbounded time-varying delays. Firstly, based on the knowledge of fractional differentiation and memristors, a unified model is established. This model is a unified form of real-valued, complex-valued, and quaternion-valued systems. Then, based on a unified method, the number of equilibrium points for FOMVMNNs is discussed. The sufficient conditions for determining the number of equilibrium points have been obtained. By using 1-norm to construct Lyapunov functions, the unified criteria for multistability of FOMVMNNs are obtained, these criteria are less conservative and easier to verify. Moreover, the attraction basins of the stable equilibrium points are estimated. Finally, two numerical simulation examples are provided to verify the correctness of the results.
Collapse
Affiliation(s)
- Jiarui Wang
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Song Zhu
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Chaoxu Mu
- School of Electrical and Automation Engineering, Tianjin University, Tianjin, 300072, China.
| | - Xiaoyang Liu
- School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Shiping Wen
- Centre for Artificial Intelligence, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
5
|
Liu P, Wang J, Zeng Z. An Overview of the Stability Analysis of Recurrent Neural Networks With Multiple Equilibria. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:1098-1111. [PMID: 34449396 DOI: 10.1109/tnnls.2021.3105519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The stability analysis of recurrent neural networks (RNNs) with multiple equilibria has received extensive interest since it is a prerequisite for successful applications of RNNs. With the increasing theoretical results on this topic, it is desirable to review the results for a systematical understanding of the state of the art. This article provides an overview of the stability results of RNNs with multiple equilibria including complete stability and multistability. First, preliminaries on the complete stability and multistability analysis of RNNs are introduced. Second, the complete stability results of RNNs are summarized. Third, the multistability results of various RNNs are reviewed in detail. Finally, future directions in these interesting topics are suggested.
Collapse
|
6
|
Multiple asymptotical ω-periodicity of fractional-order delayed neural networks under state-dependent switching. Neural Netw 2023; 157:11-25. [DOI: 10.1016/j.neunet.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
|
7
|
Multistability of Quaternion-Valued Recurrent Neural Networks with Discontinuous Nonmonotonic Piecewise Nonlinear Activation Functions. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-11116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Wan L, Liu Z. Multiple exponential stability and instability for state-dependent switched neural networks with time-varying delays and piecewise-linear radial basis activation functions. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Guo Z, Ou S, Wang J. Multistability of Switched Neural Networks With Gaussian Activation Functions Under State-Dependent Switching. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:6569-6583. [PMID: 34077372 DOI: 10.1109/tnnls.2021.3082560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article presents theoretical results on the multistability of switched neural networks with Gaussian activation functions under state-dependent switching. It is shown herein that the number and location of the equilibrium points of the switched neural networks can be characterized by making use of the geometrical properties of Gaussian functions and local linearization based on the Brouwer fixed-point theorem. Four sets of sufficient conditions are derived to ascertain the existence of 7p15p23p3 equilibrium points, and 4p13p22p3 of them are locally stable, wherein p1 , p2 , and p3 are nonnegative integers satisfying 0 ≤ p1+p2+p3 ≤ n and n is the number of neurons. It implies that there exist up to 7n equilibria, and up to 4n of them are locally stable when p1=n . It also implies that properly selecting p1 , p2 , and p3 can engender a desirable number of stable equilibria. Two numerical examples are elaborated to substantiate the theoretical results.
Collapse
|
10
|
Wan L, Liu Z. Multimode function multistability for Cohen-Grossberg neural networks with mixed time delays. ISA TRANSACTIONS 2022; 129:179-192. [PMID: 34991879 DOI: 10.1016/j.isatra.2021.11.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
In this paper, we are concerned with the multimode function multistability for Cohen-Grossberg neural networks (CGNNs) with mixed time delays. It is introduced the multimode function multistability as well as its specific mathematical expression, which is a generalization of multiple exponential stability, multiple polynomial stability, multiple logarithmic stability, and asymptotic stability. Also, according to the neural network (NN) model and the maximum and minimum values of activation functions, n pairs of upper and lower boundary functions are obtained. Via the locations of the zeros of the n pairs of upper and lower boundary functions, the state space is divided into ∏i=1n(2Hi+1) parts correspondingly. By virtue of the reduction to absurdity, continuity of function, Brouwer's fixed point theorem and Lyapunov stability theorem, the criteria for multimode function multistability are acquired. Multiple types of multistability, including multiple exponential stability, multiple polynomial stability, multiple logarithmic stability, and multiple asymptotic stability, can be achieved by selecting different types of function P(t). Two numerical examples are offered to substantiate the generality of the obtained criteria over the existing results.
Collapse
Affiliation(s)
- Liguang Wan
- School of Electrical Engineering and Automation, Hubei Normal University, Huangshi 435002, China; School of information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Zhenxing Liu
- School of information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
11
|
Multistability analysis of switched fractional-order recurrent neural networks with time-varying delay. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Multistability analysis of delayed recurrent neural networks with a class of piecewise nonlinear activation functions. Neural Netw 2022; 152:80-89. [DOI: 10.1016/j.neunet.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022]
|
13
|
Chouhan SS, kumar R, Sarkar S, Das S. Multistability Analysis of Octonion-Valued Neural Networks with Time-Varying Delays. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.07.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Local Lagrange Exponential Stability Analysis of Quaternion-Valued Neural Networks with Time Delays. MATHEMATICS 2022. [DOI: 10.3390/math10132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study on the local stability of quaternion-valued neural networks is of great significance to the application of associative memory and pattern recognition. In the research, we study local Lagrange exponential stability of quaternion-valued neural networks with time delays. By separating the quaternion-valued neural networks into a real part and three imaginary parts, separating the quaternion field into 34n subregions, and using the intermediate value theorem, sufficient conditions are proposed to ensure quaternion-valued neural networks have 34n equilibrium points. According to the Halanay inequality, the conditions for the existence of 24n local Lagrange exponentially stable equilibria of quaternion-valued neural networks are established. The obtained stability results improve and extend the existing ones. Under the same conditions, quaternion-valued neural networks have more stable equilibrium points than complex-valued neural networks and real-valued neural networks. The validity of the theoretical results were verified by an example.
Collapse
|
15
|
Xu F, Liu L, Zurada JM, Yi Z. Analysis of Equilibria for a Class of Recurrent Neural Networks With Two Subnetworks. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:4701-4716. [PMID: 33296319 DOI: 10.1109/tcyb.2020.3034249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is concerned with the problem of the number and dynamical properties of equilibria for a class of connected recurrent networks with two switching subnetworks. In this network model, parameters serve as switches that allow two subnetworks to be turned ON or OFF among different dynamic states. The two subnetworks are described by a nonlinear coupled equation with a complicated relation among network parameters. Thus, the number and dynamical properties of equilibria have been very hard to investigate. By using Sturm's theorem, together with the geometrical properties of the network equation, we give a complete analysis of equilibria, including the existence, number, and dynamical properties. Necessary and sufficient conditions for the existence and exact number of equilibria are established. Moreover, the dynamical property of each equilibrium point is discussed without prior assumption of their locations. Finally, simulation examples are given to illustrate the theoretical results in this article.
Collapse
|
16
|
Multistability of Hopfield neural networks with a designed discontinuous sawtooth-type activation function. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhang F, Huang T, Feng D, Zeng Z. Multistability and robustness of complex-valued neural networks with delays and input perturbation. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Zhang F, Zeng Z. Robust Stability of Recurrent Neural Networks With Time-Varying Delays and Input Perturbation. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:3027-3038. [PMID: 31329152 DOI: 10.1109/tcyb.2019.2926537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper addresses the robust stability of recurrent neural networks (RNNs) with time-varying delays and input perturbation, where the time-varying delays include discrete and distributed delays. By employing the new ψ -type integral inequality, several sufficient conditions are derived for the robust stability of RNNs with discrete and distributed delays. Meanwhile, the robust boundedness of neural networks is explored by the bounded input perturbation and L1 -norm constraint. Moreover, RNNs have a strong anti-jamming ability to input perturbation, and the robustness of RNNs is suitable for associative memory. Specifically, when input perturbation belongs to the specified and well-characterized space, the results cover both monostability and multistability as special cases. It is revealed that there is a relationship between the stability of neural networks and input perturbation. Compared with the existing results, these conditions proposed in this paper improve and extend the existing stability in some literature. Finally, the numerical examples are given to substantiate the effectiveness of the theoretical results.
Collapse
|
19
|
Zhang J, Zhu S, Lu N, Wen S. Multistability of state-dependent switching neural networks with discontinuous nonmonotonic piecewise linear activation functions. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Shen Y, Zhu S. Multistability of delayed neural networks with monotonically nondecreasing linear activation function. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Wan P, Sun D, Zhao M, Zhao H. Monostability and Multistability for Almost-Periodic Solutions of Fractional-Order Neural Networks With Unsaturating Piecewise Linear Activation Functions. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:5138-5152. [PMID: 32092015 DOI: 10.1109/tnnls.2020.2964030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the unsaturating activation function is unbounded, more complex dynamics may exist in neural networks with this kind of activation function. In this article, monostability and multistability results of almost-periodic solutions are developed for fractional-order neural networks with unsaturating piecewise linear activation functions. Some globally Mittag-Leffler attractive sets are given, and the existence of globally Mittag-Leffler stable almost-periodic solution is demonstrated by using Ascoli-Arzela theorem. In particular, some sufficient conditions are provided to ascertain the multistability of almost-periodic solutions based on locally positively invariant set. It shows that there exists an almost-periodic solution in each positively invariant set, and all trajectories converge to this periodic trajectory in that rectangular area. Two illustrative examples are provided to demonstrate the effectiveness of the proposed sufficient criteria.
Collapse
|
22
|
Qin S, Ma Q, Feng J, Xu C. Multistability of Almost Periodic Solution for Memristive Cohen-Grossberg Neural Networks With Mixed Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:1914-1926. [PMID: 31395559 DOI: 10.1109/tnnls.2019.2927506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with n -neuron have (K+1)n locally exponentially stable almost periodic solutions, where nature number K depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results.
Collapse
|
23
|
Liu P, Zheng WX, Zeng Z. On Complete Stability of Recurrent Neural Networks With Time-Varying Delays and General Piecewise Linear Activation Functions. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:2249-2263. [PMID: 30575557 DOI: 10.1109/tcyb.2018.2884836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper addresses the problem of complete stability of delayed recurrent neural networks with a general class of piecewise linear activation functions. By applying an appropriate partition of the state space and iterating the defined bounding functions, some sufficient conditions are obtained to ensure that an n -neuron neural network is completely stable with exactly ∏i=1n(2Ki-1) equilibrium points, among which ∏i=1nKi equilibrium points are locally exponentially stable and the others are unstable, where Ki (i=1,…,n) are non-negative integers which depend jointly on activation functions and parameters of neural networks. The results of this paper include the existing works on the stability analysis of recurrent neural networks with piecewise linear functions as special cases and hence can be considered as the improvement and extension of the existing stability results in the literature. A numerical example is provided to illustrate the derived theoretical results.
Collapse
|
24
|
Guo Z, Ou S, Wang J. Multistability of switched neural networks with sigmoidal activation functions under state-dependent switching. Neural Netw 2020; 122:239-252. [DOI: 10.1016/j.neunet.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 11/12/2022]
|
25
|
Wan P, Sun D, Zhao M, Wan L, Jin S. Multistability and attraction basins of discrete-time neural networks with nonmonotonic piecewise linear activation functions. Neural Netw 2019; 122:231-238. [PMID: 31698201 DOI: 10.1016/j.neunet.2019.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
This paper is concerned with multistability and attraction basins of discrete-time neural networks with nonmonotonic piecewise linear activation functions. Under some reasonable conditions, the addressed networks have (2m+1)n equilibrium points. (m+1)n of which are locally asymptotically stable, and the others are unstable. The attraction basins of the locally asymptotically stable equilibrium points are given in the form of hyperspherical regions. These results here, which include existence, uniqueness, locally asymptotical stability, instability and attraction basins of the multiple equilibrium points, generalize and improve the earlier publications. Finally, an illustrative example with numerical simulation is given to show the feasibility and the effectiveness of the theoretical results. The theoretical results and illustrative example indicate that the activation functions improve the storage capacity of neural networks significantly.
Collapse
Affiliation(s)
- Peng Wan
- Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China; School of Automation, Chongqing University, Chongqing 400044, China
| | - Dihua Sun
- Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China; School of Automation, Chongqing University, Chongqing 400044, China.
| | - Min Zhao
- Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China; School of Automation, Chongqing University, Chongqing 400044, China
| | - Li Wan
- School of Software Engineering, Southeast University, Nanjing, 211189, China
| | - Shuang Jin
- Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044, China; School of Automation, Chongqing University, Chongqing 400044, China
| |
Collapse
|
26
|
Guo Z, Liu L, Wang J. Multistability of Switched Neural Networks With Piecewise Linear Activation Functions Under State-Dependent Switching. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2052-2066. [PMID: 30418927 DOI: 10.1109/tnnls.2018.2876711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper is concerned with the multistability of switched neural networks with piecewise linear activation functions under state-dependent switching. Under some reasonable assumptions on the switching threshold and activation functions, by using the state-space decomposition method, contraction mapping theorem, and strictly diagonally dominant matrix theory, we can characterize the number of equilibria as well as analyze the stability/instability of the equilibria. More interesting, we can find that the switching threshold plays an important role for stable equilibria in the unsaturation regions of activation functions, and the number of stable equilibria of an n -neuron switched neural network with state-dependent parameters increases to 3n from 2n in the conventional one. Furthermore, for two-neuron switched neural networks, the precise attraction basin of each stable equilibrium point can be figured out, and its boundary is composed of the stable manifolds of unstable equilibrium points and the switching lines. Two simulation examples are discussed in detail to substantiate the effectiveness of the theoretical analysis.
Collapse
|
27
|
Hu B, Guan ZH, Chen G, Lewis FL. Multistability of Delayed Hybrid Impulsive Neural Networks With Application to Associative Memories. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1537-1551. [PMID: 30296243 DOI: 10.1109/tnnls.2018.2870553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The important topic of multistability of continuous-and discrete-time neural network (NN) models has been investigated rather extensively. Concerning the design of associative memories, multistability of delayed hybrid NNs is studied in this paper with an emphasis on the impulse effects. Arising from the spiking phenomenon in biological networks, impulsive NNs provide an efficient model for synaptic interconnections among neurons. Using state-space decomposition, the coexistence of multiple equilibria of hybrid impulsive NNs is analyzed. Multistability criteria are then established regrading delayed hybrid impulsive neurodynamics, for which both the impulse effects on the convergence rate and the basins of attraction of the equilibria are discussed. Illustrative examples are given to verify the theoretical results and demonstrate an application to the design of associative memories. It is shown by an experimental example that delayed hybrid impulsive NNs have the advantages of high storage capacity and high fault tolerance when used for associative memories.
Collapse
|
28
|
Zhang F, Zeng Z. Multiple ψ -Type Stability of Cohen-Grossberg Neural Networks With Both Time-Varying Discrete Delays and Distributed Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:566-579. [PMID: 29994620 DOI: 10.1109/tnnls.2018.2846249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, multiple ψ -type stability of Cohen-Grossberg neural networks (CGNNs) with both time-varying discrete delays and distributed delays is investigated. By utilizing ψ -type functions combined with a new ψ -type integral inequality for treating distributed delay terms, some sufficient conditions are obtained to ensure that multiple equilibrium points are ψ -type stable for CGNNs with discrete and distributed delays, where the distributed delays include bounded and unbounded delays. These conditions of CGNNs with different output functions are less restrictive. More specifically, the algebraic criteria of the generalized model are applicable to several well-known neural network models by taking special parameters, and multiple different output functions are introduced to replace some of the same output functions, which improves the diversity of output results for the design of neural networks. In addition, the estimation of relative convergence rate of ψ -type stability is determined by the parameters of CGNNs and the selection of ψ -type functions. As a result, the existing results on multistability and monostability can be improved and extended. Finally, some numerical simulations are presented to illustrate the effectiveness of the obtained results.
Collapse
|
29
|
Liu P, Nie X, Liang J, Cao J. Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions. Neural Netw 2018; 108:452-465. [DOI: 10.1016/j.neunet.2018.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/28/2022]
|
30
|
Sha C, Zhao H, Yuan Y, Bai Y. Synthesization of Multi-valued Associative High-Capacity Memory Based on Continuous Networks with a Class of Non-smooth Linear Nondecreasing Activation Functions. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9955-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Song Q, Chen X. Multistability Analysis of Quaternion-Valued Neural Networks With Time Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:5430-5440. [PMID: 29994739 DOI: 10.1109/tnnls.2018.2801297] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper addresses the multistability issue for quaternion-valued neural networks (QVNNs) with time delays. By using the inequality technique, sufficient conditions are proposed for the boundedness and the global attractivity of delayed QVNNs. Based on the geometrical properties of the activation functions, several criteria are obtained to ensure the existence of equilibrium points, of which are locally stable. Two numerical examples are provided to illustrate the effectiveness of the obtained results.
Collapse
|
32
|
Chen X, Song Q, Li Z, Zhao Z, Liu Y. Stability Analysis of Continuous-Time and Discrete-Time Quaternion-Valued Neural Networks With Linear Threshold Neurons. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:2769-2781. [PMID: 28600263 DOI: 10.1109/tnnls.2017.2704286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.
Collapse
|
33
|
Liu P, Zeng Z, Wang J. Multistability of Recurrent Neural Networks With Nonmonotonic Activation Functions and Unbounded Time-Varying Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:3000-3010. [PMID: 28678718 DOI: 10.1109/tnnls.2017.2710299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper is concerned with the coexistence of multiple equilibrium points and dynamical behaviors of recurrent neural networks with nonmonotonic activation functions and unbounded time-varying delays. Based on a state space partition by using the geometrical properties of the activation functions, it is revealed that an -neuron neural network can exhibit equilibrium points with . In particular, several sufficient criteria are proposed to ascertain the asymptotical stability of equilibrium points for recurrent neural networks. These theoretical results cover both monostability and multistability. Furthermore, the attraction basins of asymptotically stable equilibrium points are estimated. It is shown that the attraction basins of the stable equilibrium points can be larger than their originally partitioned subsets. Finally, the results are illustrated by using the simulation results of four examples.
Collapse
|
34
|
Di Marco M, Forti M, Pancioni L. New Conditions for Global Asymptotic Stability of Memristor Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:1822-1834. [PMID: 28422696 DOI: 10.1109/tnnls.2017.2688404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent papers in the literature introduced a class of neural networks (NNs) with memristors, named dynamic-memristor (DM) NNs, such that the analog processing takes place in the charge-flux domain, instead of the typical current-voltage domain as it happens for Hopfield NNs and standard cellular NNs. One key advantage is that, when a steady state is reached, all currents, voltages, and power of a DM-NN drop off, whereas the memristors act as nonvolatile memories that store the processing result. Previous work in the literature addressed multistability of DM-NNs, i.e., convergence of solutions in the presence of multiple asymptotically stable equilibrium points (EPs). The goal of this paper is to study a basically different dynamical property of DM-NNs, namely, to thoroughly investigate the fundamental issue of global asymptotic stability (GAS) of the unique EP of a DM-NN in the general case of nonsymmetric neuron interconnections. A basic result on GAS of DM-NNs is established using Lyapunov method and the concept of Lyapunov diagonally stable matrices. On this basis, some relevant classes of nonsymmetric DM-NNs enjoying the property of GAS are highlighted.
Collapse
|
35
|
Wan L, Wu A. Multistability in Mittag-Leffler sense of fractional-order neural networks with piecewise constant arguments. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.01.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Tan M, Xu D. Multiple μ-stability analysis for memristor-based complex-valued neural networks with nonmonotonic piecewise nonlinear activation functions and unbounded time-varying delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.11.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Zhang F, Zeng Z. Multistability and instability analysis of recurrent neural networks with time-varying delays. Neural Netw 2017; 97:116-126. [PMID: 29096200 DOI: 10.1016/j.neunet.2017.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/07/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
This paper provides new theoretical results on the multistability and instability analysis of recurrent neural networks with time-varying delays. It is shown that such n-neuronal recurrent neural networks have exactly [Formula: see text] equilibria, [Formula: see text] of which are locally exponentially stable and the others are unstable, where k0 is a nonnegative integer such that k0≤n. By using the combination method of two different divisions, recurrent neural networks can possess more dynamic properties. This method improves and extends the existing results in the literature. Finally, one numerical example is provided to show the superiority and effectiveness of the presented results.
Collapse
Affiliation(s)
- Fanghai Zhang
- School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Zhigang Zeng
- School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| |
Collapse
|
38
|
Zhou C, Zeng X, Luo C, Zhang H. A New Local Bipolar Autoassociative Memory Based on External Inputs of Discrete Recurrent Neural Networks With Time Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2479-2489. [PMID: 27529878 DOI: 10.1109/tnnls.2016.2575925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.
Collapse
Affiliation(s)
- Caigen Zhou
- Institute of Intelligence Science and Technology, Hohai University, Nanjing, China
| | - Xiaoqin Zeng
- Institute of Intelligence Science and Technology, Hohai University, Nanjing, China
| | - Chaomin Luo
- Department of Electrical and Computer Engineering, University of Detroit Mercy, Detroit, MI, USA
| | - Huaguang Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
39
|
Liu P, Zeng Z, Wang J. Multistability of Delayed Recurrent Neural Networks with Mexican Hat Activation Functions. Neural Comput 2017; 29:423-457. [DOI: 10.1162/neco_a_00922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This letter studies the multistability analysis of delayed recurrent neural networks with Mexican hat activation function. Some sufficient conditions are obtained to ensure that an [Formula: see text]-dimensional recurrent neural network can have [Formula: see text] equilibrium points with [Formula: see text], and [Formula: see text] of them are locally exponentially stable. Furthermore, the attraction basins of these stable equilibrium points are estimated. We show that the attraction basins of these stable equilibrium points can be larger than their originally partitioned subsets. The results of this letter improve and extend the existing stability results in the literature. Finally, a numerical example containing different cases is given to illustrate the theoretical results.
Collapse
Affiliation(s)
- Peng Liu
- School of Automation, Huazhong University of Science and Technology, China, and the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, P.R.C
| | - Zhigang Zeng
- School of Automation, Huazhong University of Science and Technology, China, and the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, P.R.C
| | - Jun Wang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
40
|
Zhang F, Zeng Z. Multistability of recurrent neural networks with time-varying delays and nonincreasing activation function. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.07.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Nie X, Zheng WX, Cao J. Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays. Neural Netw 2016; 84:172-180. [PMID: 27794268 DOI: 10.1016/j.neunet.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/07/2016] [Accepted: 08/19/2016] [Indexed: 11/29/2022]
Abstract
In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5n equilibrium points located in ℜn, and 3n of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results.
Collapse
Affiliation(s)
- Xiaobing Nie
- Department of Mathematics, Southeast University, Nanjing 210096, China; School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, NSW 2751, Australia.
| | - Wei Xing Zheng
- School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, NSW 2751, Australia.
| | - Jinde Cao
- Department of Mathematics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
42
|
Liu P, Zeng Z, Wang J. Complete stability of delayed recurrent neural networks with Gaussian activation functions. Neural Netw 2016; 85:21-32. [PMID: 27814464 DOI: 10.1016/j.neunet.2016.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022]
Abstract
This paper addresses the complete stability of delayed recurrent neural networks with Gaussian activation functions. By means of the geometrical properties of Gaussian function and algebraic properties of nonsingular M-matrix, some sufficient conditions are obtained to ensure that for an n-neuron neural network, there are exactly 3k equilibrium points with 0≤k≤n, among which 2k and 3k-2k equilibrium points are locally exponentially stable and unstable, respectively. Moreover, it concludes that all the states converge to one of the equilibrium points; i.e., the neural networks are completely stable. The derived conditions herein can be easily tested. Finally, a numerical example is given to illustrate the theoretical results.
Collapse
Affiliation(s)
- Peng Liu
- School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Zhigang Zeng
- School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Jun Wang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
43
|
|
44
|
Liu P, Zeng Z, Wang J. Multistability analysis of a general class of recurrent neural networks with non-monotonic activation functions and time-varying delays. Neural Netw 2016; 79:117-27. [DOI: 10.1016/j.neunet.2016.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 11/29/2022]
|
45
|
Zhou C, Zeng X, Yu J, Jiang H. A unified associative memory model based on external inputs of continuous recurrent neural networks. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.12.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Nie X, Zheng WX. Dynamical Behaviors of Multiple Equilibria in Competitive Neural Networks With Discontinuous Nonmonotonic Piecewise Linear Activation Functions. IEEE TRANSACTIONS ON CYBERNETICS 2016; 46:679-693. [PMID: 25826814 DOI: 10.1109/tcyb.2015.2413212] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper addresses the problem of coexistence and dynamical behaviors of multiple equilibria for competitive neural networks. First, a general class of discontinuous nonmonotonic piecewise linear activation functions is introduced for competitive neural networks. Then based on the fixed point theorem and theory of strict diagonal dominance matrix, it is shown that under some conditions, such n -neuron competitive neural networks can have 5(n) equilibria, among which 3(n) equilibria are locally stable and the others are unstable. More importantly, it is revealed that the neural networks with the discontinuous activation functions introduced in this paper can have both more total equilibria and locally stable equilibria than the ones with other activation functions, such as the continuous Mexican-hat-type activation function and discontinuous two-level activation function. Furthermore, the 3(n) locally stable equilibria given in this paper are located in not only saturated regions, but also unsaturated regions, which is different from the existing results on multistability of neural networks with multiple level activation functions. A simulation example is provided to illustrate and validate the theoretical findings.
Collapse
|
47
|
Multiplicity of almost periodic solutions for multidirectional associative memory neural network with distributed delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.06.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Nie X, Zheng WX, Cao J. Multistability of memristive Cohen–Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. Neural Netw 2015; 71:27-36. [DOI: 10.1016/j.neunet.2015.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/06/2015] [Accepted: 07/19/2015] [Indexed: 10/23/2022]
|
49
|
Nie X, Zheng WX. Multistability and Instability of Neural Networks With Discontinuous Nonmonotonic Piecewise Linear Activation Functions. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:2901-2913. [PMID: 26277000 DOI: 10.1109/tnnls.2015.2458978] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we discuss the coexistence and dynamical behaviors of multiple equilibrium points for recurrent neural networks with a class of discontinuous nonmonotonic piecewise linear activation functions. It is proved that under some conditions, such n -neuron neural networks can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable, based on the contraction mapping theorem and the theory of strict diagonal dominance matrix. The investigation shows that the neural networks with the discontinuous activation functions introduced in this paper can have both more total equilibrium points and more locally stable equilibrium points than the ones with continuous Mexican-hat-type activation function or discontinuous two-level activation functions. An illustrative example with computer simulations is presented to verify the theoretical analysis.
Collapse
|
50
|
A generalized bipolar auto-associative memory model based on discrete recurrent neural networks. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.03.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|