1
|
Konar D, Bhattacharyya S, Gandhi TK, Panigrahi BK, Jiang R. 3-D Quantum-Inspired Self-Supervised Tensor Network for Volumetric Segmentation of Medical Images. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10312-10325. [PMID: 37022399 DOI: 10.1109/tnnls.2023.3240238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This article introduces a novel shallow 3-D self-supervised tensor neural network in quantum formalism for volumetric segmentation of medical images with merits of obviating training and supervision. The proposed network is referred to as the 3-D quantum-inspired self-supervised tensor neural network (3-D-QNet). The underlying architecture of 3-D-QNet is composed of a trinity of volumetric layers, viz., input, intermediate, and output layers interconnected using an S -connected third-order neighborhood-based topology for voxelwise processing of 3-D medical image data, suitable for semantic segmentation. Each of the volumetric layers contains quantum neurons designated by qubits or quantum bits. The incorporation of tensor decomposition in quantum formalism leads to faster convergence of network operations to preclude the inherent slow convergence problems faced by the classical supervised and self-supervised networks. The segmented volumes are obtained once the network converges. The suggested 3-D-QNet is tailored and tested on the BRATS 2019 Brain MR image dataset and the Liver Tumor Segmentation Challenge (LiTS17) dataset extensively in our experiments. The 3-D-QNet has achieved promising dice similarity (DS) as compared with the time-intensive supervised convolutional neural network (CNN)-based models, such as 3-D-UNet, voxelwise residual network (VoxResNet), Dense-Res-Inception Net (DRINet), and 3-D-ESPNet, thereby showing a potential advantage of our self-supervised shallow network on facilitating semantic segmentation.
Collapse
|
2
|
Tian CW, Chen XX, Shi L, Zhu HY, Dai GC, Chen H, Rui YF. Machine learning applications for the prediction of extended length of stay in geriatric hip fracture patients. World J Orthop 2023; 14:741-754. [PMID: 37970626 PMCID: PMC10642403 DOI: 10.5312/wjo.v14.i10.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Geriatric hip fractures are one of the most common fractures in elderly individuals, and prolonged hospital stays increase the risk of death and complications. Machine learning (ML) has become prevalent in clinical data processing and predictive models. This study aims to develop ML models for predicting extended length of stay (eLOS) among geriatric patients with hip fractures and to identify the associated risk factors. AIM To develop ML models for predicting the eLOS among geriatric patients with hip fractures, identify associated risk factors, and compare the performance of each model. METHODS A retrospective study was conducted at a single orthopaedic trauma centre, enrolling all patients who underwent hip fracture surgery between January 2018 and December 2022. The study collected various patient characteristics, encompassing demographic data, general health status, injury-related data, laboratory examinations, surgery-related data, and length of stay. Features that exhibited significant differences in univariate analysis were integrated into the ML model establishment and subsequently cross-verified. The study compared the performance of the ML models and determined the risk factors for eLOS. RESULTS The study included 763 patients, with 380 experiencing eLOS. Among the models, the decision tree, random forest, and extreme Gradient Boosting models demonstrated the most robust performance. Notably, the artificial neural network model also exhibited impressive results. After cross-validation, the support vector machine and logistic regression models demonstrated superior performance. Predictors for eLOS included delayed surgery, D-dimer level, American Society of Anaesthesiologists (ASA) classification, type of surgery, and sex. CONCLUSION ML proved to be highly accurate in predicting the eLOS for geriatric patients with hip fractures. The identified key risk factors were delayed surgery, D-dimer level, ASA classification, type of surgery, and sex. This valuable information can aid clinicians in allocating resources more efficiently to meet patient demand effectively.
Collapse
Affiliation(s)
- Chu-Wei Tian
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Multidisciplinary Team for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Multidisciplinary Team for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Multidisciplinary Team for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Huan-Yi Zhu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Multidisciplinary Team for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Multidisciplinary Team for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Hui Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Multidisciplinary Team for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Multidisciplinary Team for Geriatric Hip Fracture Comprehensive Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
3
|
Konar D, Bhattacharyya S, Panigrahi BK, Behrman EC. Qutrit-Inspired Fully Self-Supervised Shallow Quantum Learning Network for Brain Tumor Segmentation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:6331-6345. [PMID: 33983887 DOI: 10.1109/tnnls.2021.3077188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bilevel quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system, referred to as quantum fully self-supervised neural network (QFS-Net), is presented for automated segmentation of brain magnetic resonance (MR) images. The QFS-Net model comprises a trinity of a layered structure of qutrits interconnected through parametric Hadamard gates using an eight-connected second-order neighborhood-based topology. The nonlinear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counterpropagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on the Cancer Imaging Archive (TCIA) dataset collected from the Nature repository. The experimental results are also compared with state-of-the-art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model and its classical counterpart. Results shed promising segmented outcomes in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources. The proposed QFS-Net is also investigated on natural gray-scale images from the Berkeley segmentation dataset and yields promising outcomes in segmentation, thereby demonstrating the robustness of the QFS-Net model.
Collapse
|
4
|
Kaveh M, Mesgari MS. Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Architectures: A Comprehensive Review. Neural Process Lett 2022; 55:1-104. [PMID: 36339645 PMCID: PMC9628382 DOI: 10.1007/s11063-022-11055-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 12/02/2022]
Abstract
The learning process and hyper-parameter optimization of artificial neural networks (ANNs) and deep learning (DL) architectures is considered one of the most challenging machine learning problems. Several past studies have used gradient-based back propagation methods to train DL architectures. However, gradient-based methods have major drawbacks such as stucking at local minimums in multi-objective cost functions, expensive execution time due to calculating gradient information with thousands of iterations and needing the cost functions to be continuous. Since training the ANNs and DLs is an NP-hard optimization problem, their structure and parameters optimization using the meta-heuristic (MH) algorithms has been considerably raised. MH algorithms can accurately formulate the optimal estimation of DL components (such as hyper-parameter, weights, number of layers, number of neurons, learning rate, etc.). This paper provides a comprehensive review of the optimization of ANNs and DLs using MH algorithms. In this paper, we have reviewed the latest developments in the use of MH algorithms in the DL and ANN methods, presented their disadvantages and advantages, and pointed out some research directions to fill the gaps between MHs and DL methods. Moreover, it has been explained that the evolutionary hybrid architecture still has limited applicability in the literature. Also, this paper classifies the latest MH algorithms in the literature to demonstrate their effectiveness in DL and ANN training for various applications. Most researchers tend to extend novel hybrid algorithms by combining MHs to optimize the hyper-parameters of DLs and ANNs. The development of hybrid MHs helps improving algorithms performance and capable of solving complex optimization problems. In general, the optimal performance of the MHs should be able to achieve a suitable trade-off between exploration and exploitation features. Hence, this paper tries to summarize various MH algorithms in terms of the convergence trend, exploration, exploitation, and the ability to avoid local minima. The integration of MH with DLs is expected to accelerate the training process in the coming few years. However, relevant publications in this way are still rare.
Collapse
Affiliation(s)
- Mehrdad Kaveh
- Department of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, 19967-15433 Iran
| | - Mohammad Saadi Mesgari
- Department of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran, 19967-15433 Iran
| |
Collapse
|
5
|
A Novel Genetic Neural Network Algorithm with Link Switches and Its Application in University Professional Course Evaluation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9564443. [PMID: 35655522 PMCID: PMC9155964 DOI: 10.1155/2022/9564443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
This study exploits a novel enhanced genetic neural network algorithm with link switches (EGA-NNLS) to model the professional university course evaluating system. Various indices should be employed to evaluate the learning effect of a professional course comprehensively and objectively, and the traditional artificial evaluation methods cannot achieve this goal. The presented data-driven modeling method, EGA-NNLS, combines a neural network with link switches (NN-LS) with an enhanced genetic algorithm (EGA) and the Levenberg-Marquardt (LM) algorithm. It employs an optimized network structure combined with EGA and NN-LS to learn the relationships between the system's input and output from historical data and uses the network's gradient information via the LM algorithm. Compared with the traditional backpropagation neural network (BPNN), EGA-NNLS achieves a faster convergence speed and higher evaluation precision. In order to verify the efficiency of EGA-NNLS, it is applied to a collection of experimental data for modeling the professional university course evaluating system.
Collapse
|
6
|
Konar D, Bhattacharyya S, Dey S, Panigrahi BK. Optimized activation for quantum-inspired self-supervised neural network based fully automated brain lesion segmentation. APPL INTELL 2022. [DOI: 10.1007/s10489-021-03108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Abstract
In the last few years, intensive research has been done to enhance artificial intelligence (AI) using optimization techniques. In this paper, we present an extensive review of artificial neural networks (ANNs) based optimization algorithm techniques with some of the famous optimization techniques, e.g., genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), and backtracking search algorithm (BSA) and some modern developed techniques, e.g., the lightning search algorithm (LSA) and whale optimization algorithm (WOA), and many more. The entire set of such techniques is classified as algorithms based on a population where the initial population is randomly created. Input parameters are initialized within the specified range, and they can provide optimal solutions. This paper emphasizes enhancing the neural network via optimization algorithms by manipulating its tuned parameters or training parameters to obtain the best structure network pattern to dissolve the problems in the best way. This paper includes some results for improving the ANN performance by PSO, GA, ABC, and BSA optimization techniques, respectively, to search for optimal parameters, e.g., the number of neurons in the hidden layers and learning rate. The obtained neural net is used for solving energy management problems in the virtual power plant system.
Collapse
|
8
|
Konar D, Bhattacharyya S, Gandhi TK, Panigrahi BK. A Quantum-Inspired Self-Supervised Network model for automatic segmentation of brain MR images. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Artificial Neural Network and Cox Regression Models for Predicting Mortality after Hip Fracture Surgery: A Population-Based Comparison. ACTA ACUST UNITED AC 2020; 56:medicina56050243. [PMID: 32438724 PMCID: PMC7279348 DOI: 10.3390/medicina56050243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/31/2023]
Abstract
This study purposed to validate the accuracy of an artificial neural network (ANN) model for predicting the mortality after hip fracture surgery during the study period, and to compare performance indices between the ANN model and a Cox regression model. A total of 10,534 hip fracture surgery patients during 1996–2010 were recruited in the study. Three datasets were used: a training dataset (n = 7374) was used for model development, a testing dataset (n = 1580) was used for internal validation, and a validation dataset (1580) was used for external validation. Global sensitivity analysis also was performed to evaluate the relative importances of input predictors in the ANN model. Mortality after hip fracture surgery was significantly associated with referral system, age, gender, urbanization of residence area, socioeconomic status, Charlson comorbidity index (CCI) score, intracapsular fracture, hospital volume, and surgeon volume (p < 0.05). For predicting mortality after hip fracture surgery, the ANN model had higher prediction accuracy and overall performance indices compared to the Cox model. Global sensitivity analysis of the ANN model showed that the referral to lower-level medical institutions was the most important variable affecting mortality, followed by surgeon volume, hospital volume, and CCI score. Compared with the Cox regression model, the ANN model was more accurate in predicting postoperative mortality after a hip fracture. The forecasting predictors associated with postoperative mortality identified in this study can also bae used to educate candidates for hip fracture surgery with respect to the course of recovery and health outcomes.
Collapse
|
10
|
Chen MR, Chen BP, Zeng GQ, Lu KD, Chu P. An adaptive fractional-order BP neural network based on extremal optimization for handwritten digits recognition. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2018.10.090] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Kolahdoozi M, Amirkhani A, Shojaeefard MH, Abraham A. A novel quantum inspired algorithm for sparse fuzzy cognitive maps learning. APPL INTELL 2019. [DOI: 10.1007/s10489-019-01476-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Chiu CC, Lee KT, Lee HH, Wang JJ, Sun DP, Huang CC, Shi HY. Comparison of Models for Predicting Quality of Life After Surgical Resection of Hepatocellular Carcinoma: a Prospective Study. J Gastrointest Surg 2018; 22:1724-1731. [PMID: 29916106 DOI: 10.1007/s11605-018-3833-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The essential issue of internal validity has not been adequately addressed in prediction models such as artificial neural network (ANN), support vector machine (SVM), Gaussian process regression (GPR), and multiple linear regression (MLR) models. METHODS This prospective study compared the accuracy of these four models in predicting quality of life (QOL) after hepatic resection received by 332 patients with hepatocellular carcinoma (HCC) during 2012-2015. An estimation subset was used to train the models, and a validation subset was used to evaluate their performance. Sensitivity score approach was also used to assess the relative significance of input parameters in the system models. RESULTS The ANN model had significantly higher performance indicators compared to the SVM, GPR, and MLR models (P < 0.05). Additionally, the ANN prediction of QOL at 6 months after hepatic resection significantly correlated with age, gender, marital status, Charlson comorbidity index (CCI) score, chemotherapy, radiotherapy, hospital volume, surgeon volume, and preoperational functional status (P < 0.05). Preoperational functional status was the most influential (sensitive) variable affecting sixth-month QOL followed by surgeon volume, hospital volume, age, and CCI score. CONCLUSIONS The comparisons showed that, in preoperative and postoperative healthcare consultations with HCC surgery candidates, QOL at 6 months post-surgery should be estimated with an ANN model rather than with SVM, GPR, or MLR models. The best QOL predictors identified in this study can also be used to educate candidates for HCC surgery in the expected course of recovery and other surgical outcomes.
Collapse
Affiliation(s)
- Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Liouying, Taiwan
- Department of General Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - King-Teh Lee
- Division of Hepatobiliary Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, 100, Zihyou 1st Road, Kaohsiung, 807, Taiwan
| | - Hao-Hsien Lee
- Department of General Surgery, Chi Mei Medical Center, Liouying, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ding-Ping Sun
- Department of General Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Cheng Huang
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Bachelor Program of Senior Service, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Hon-Yi Shi
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, 100, Zihyou 1st Road, Kaohsiung, 807, Taiwan.
- Department of Business Management, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Gadea-Gironés R, Colom-Palero R, Herrero-Bosch V. Optimization of Deep Neural Networks Using SoCs with OpenCL. SENSORS 2018; 18:s18051384. [PMID: 29710875 PMCID: PMC5982427 DOI: 10.3390/s18051384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 11/16/2022]
Abstract
In the optimization of deep neural networks (DNNs) via evolutionary algorithms (EAs) and the implementation of the training necessary for the creation of the objective function, there is often a trade-off between efficiency and flexibility. Pure software solutions implemented on general-purpose processors tend to be slow because they do not take advantage of the inherent parallelism of these devices, whereas hardware realizations based on heterogeneous platforms (combining central processing units (CPUs), graphics processing units (GPUs) and/or field-programmable gate arrays (FPGAs)) are designed based on different solutions using methodologies supported by different languages and using very different implementation criteria. This paper first presents a study that demonstrates the need for a heterogeneous (CPU-GPU-FPGA) platform to accelerate the optimization of artificial neural networks (ANNs) using genetic algorithms. Second, the paper presents implementations of the calculations related to the individuals evaluated in such an algorithm on different (CPU- and FPGA-based) platforms, but with the same source files written in OpenCL. The implementation of individuals on remote, low-cost FPGA systems on a chip (SoCs) is found to enable the achievement of good efficiency in terms of performance per watt.
Collapse
Affiliation(s)
- Rafael Gadea-Gironés
- Department Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain.
| | - Ricardo Colom-Palero
- Department Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain.
| | - Vicente Herrero-Bosch
- Department Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain.
| |
Collapse
|
14
|
Masuyama N, Loo CK, Seera M, Kubota N. Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:1058-1068. [PMID: 28182559 DOI: 10.1109/tnnls.2017.2653114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.
Collapse
|
15
|
Enhanced quantum-based neural network learning and its application to signature verification. Soft comput 2017. [DOI: 10.1007/s00500-017-2954-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
A Quantum-Inspired Evolutionary Algorithm Using Gaussian Distribution-Based Quantization. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2641-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Lv F, Yang G, Yang W, Zhang X, Li K. The convergence and termination criterion of quantum-inspired evolutionary neural networks. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Huang SH, Loh JK, Tsai JT, Houg MF, Shi HY. Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents. CHINESE JOURNAL OF CANCER 2017; 36:23. [PMID: 28241793 PMCID: PMC5327555 DOI: 10.1186/s40880-017-0192-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Few studies of breast cancer surgery outcomes have used longitudinal data for more than 2 years. This study aimed to validate the use of the artificial neural network (ANN) model to predict the 5-year mortality of breast cancer patients after surgery and compare predictive accuracy between the ANN model, multiple logistic regression (MLR) model, and Cox regression model. METHODS This study compared the MLR, Cox, and ANN models based on clinical data of 3632 breast cancer patients who underwent surgery between 1996 and 2010. An estimation dataset was used to train the model, and a validation dataset was used to evaluate model performance. The sensitivity analysis was also used to assess the relative significance of input variables in the prediction model. RESULTS The ANN model significantly outperformed the MLR and Cox models in predicting 5-year mortality, with higher overall performance indices. The results indicated that the 5-year postoperative mortality of breast cancer patients was significantly associated with age, Charlson comorbidity index (CCI), chemotherapy, radiotherapy, hormone therapy, and breast cancer surgery volumes of hospital and surgeon (all P < 0.05). Breast cancer surgery volume of surgeon was the most influential (sensitive) variable affecting 5-year mortality, followed by breast cancer surgery volume of hospital, age, and CCI. CONCLUSIONS Compared with the conventional MLR and Cox models, the ANN model was more accurate in predicting 5-year mortality of breast cancer patients who underwent surgery. The mortality predictors identified in this study can also be used to educate candidates for breast cancer surgery with respect to the course of recovery and health outcomes.
Collapse
Affiliation(s)
- Su-Hsin Huang
- Department of Nursing, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, China.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, 100-Shih-Chun 1st Road, Kaohsiung, Taiwan, China
| | - Joon-Khim Loh
- Divison of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, China.,Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan, China
| | - Jinn-Tsong Tsai
- Department of Computer Science, National Pingtung University, Pingtung, Taiwan, China
| | - Ming-Feng Houg
- Division of General & Gastroenterological Surgery, Department of Surgery, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan, China.,Cancer Center, Kaohsiung Medical University Hospital and Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China
| | - Hon-Yi Shi
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, 100-Shih-Chun 1st Road, Kaohsiung, Taiwan, China. .,Department of Business Management, National Sun Yat-sen University, Kaohsiung, Taiwan, China.
| |
Collapse
|
19
|
Liu S, Hou Z, Yin C. Data-Driven Modeling for UGI Gasification Processes via an Enhanced Genetic BP Neural Network With Link Switches. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:2718-2729. [PMID: 26561485 DOI: 10.1109/tnnls.2015.2491325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this brief, an enhanced genetic back-propagation neural network with link switches (EGA-BPNN-LS) is proposed to address a data-driven modeling problem for gasification processes inside United Gas Improvement (UGI) gasifiers. The online-measured temperature of crude gas produced during the gasification processes plays a dominant role in the syngas industry; however, it is difficult to model temperature dynamics via first principles due to the practical complexity of the gasification process, especially as reflected by severe changes in the gas temperature resulting from infrequent manipulations of the gasifier in practice. The proposed data-driven modeling approach, EGA-BPNN-LS, incorporates an NN-LS, an EGA, and the Levenberg-Marquardt (LM) algorithm. The approach cannot only learn the relationships between the control input and the system output from historical data using an optimized network structure through a combination of EGA and NN-LS but also makes use of the networks gradient information via the LM algorithm. EGA-BPNN-LS is applied to a set of data collected from the field to model the UGI gasification processes, and the effectiveness of EGA-BPNN-LS is verified.
Collapse
|
20
|
Xiao Y, Feng RB, Leung CS, Sum J. Objective Function and Learning Algorithm for the General Node Fault Situation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:863-874. [PMID: 26990391 DOI: 10.1109/tnnls.2015.2427331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fault tolerance is one interesting property of artificial neural networks. However, the existing fault models are able to describe limited node fault situations only, such as stuck-at-zero and stuck-at-one. There is no general model that is able to describe a large class of node fault situations. This paper studies the performance of faulty radial basis function (RBF) networks for the general node fault situation. We first propose a general node fault model that is able to describe a large class of node fault situations, such as stuck-at-zero, stuck-at-one, and the stuck-at level being with arbitrary distribution. Afterward, we derive an expression to describe the performance of faulty RBF networks. An objective function is then identified from the formula. With the objective function, a training algorithm for the general node situation is developed. Finally, a mean prediction error (MPE) formula that is able to estimate the test set error of faulty networks is derived. The application of the MPE formula in the selection of basis width is elucidated. Simulation experiments are then performed to demonstrate the effectiveness of the proposed method.
Collapse
|