1
|
Wang X, Park JH, Liu Z, Yang H. Dynamic Event-Triggered Control for GSES of Memristive Neural Networks Under Multiple Cyber-Attacks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7602-7611. [PMID: 36342999 DOI: 10.1109/tnnls.2022.3217461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this article, the dynamic event-triggered control problem of memristive neural networks (MNNs) under multiple cyber-attacks is considered. A novel dynamic event-triggering scheme (DETS) and the corresponding event-triggered controller are proposed by taking into consideration both denial-of-service and deception attacks (DoS-DAs). Then, a key lemma is established to show that the dynamic event-triggered controller can be used to solve the globally stochastically exponential stability (GSES) issue of concerned MNN under multiple cyber-attacks. Meanwhile, a novel Lyapunov functional is proposed based on the actual sampling pattern. It is shown that under our proposed dynamic event-triggered controller and Lyapunov functional, the concerned MNN can achieve GSES in the presence of DoS-DAs. In addition, our results include relevant results on event-triggered control of MNN with static event-triggering scheme (SETS) or without cyber-attacks as special cases. The effectiveness of the proposed event-triggered controller under multiple cyber-attacks is illustrated by a simulation example.
Collapse
|
2
|
Sun W, Li B, Guo W, Wen S, Wu X. Interval Bipartite Synchronization of Multiple Neural Networks in Signed Graphs. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:10970-10979. [PMID: 35552146 DOI: 10.1109/tnnls.2022.3172122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interval bipartite consensus of multiagents described by signed graphs has received extensive concern recently, and the rooted cycles play a critical role in stabilization, while the structurally balanced graphs are essential to achieve bipartite consensus. However, the gauge transformation used in the linear system is no longer feasible in the nonlinear case. This article addresses interval bipartite synchronization of multiple neural networks (NNs) in a signed graph via a Lyapunov-based approach, extending the existing work to a more practical but complicated case. A general matrix M in signed graphs is introduced to construct the novel Lyapunov functions, and sufficient conditions are obtained. We find that the rooted cycles and the structurally balanced graphs are essential to stabilize and achieve bipartite synchronization. More importantly, we discover that the nonrooted cycles are crucial in reaching interval bipartite synchronization, not previously mentioned. Several examples are presented to illustrate interval bipartite synchronization of multiple NNs with signed graphs.
Collapse
|
3
|
Zhu S, Gao Y, Hou Y, Yang C. Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:11029-11034. [PMID: 35446773 DOI: 10.1109/tnnls.2022.3167117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is also obtained. In addition, an observer for MCVNNs is designed. Two illustrative simulations are also given to show the effectiveness of the obtained conclusions.
Collapse
|
4
|
Oliva-Gonzalez LJ, Martínez-Guerra R, Flores-Flores JP. A fractional PI observer for incommensurate fractional order systems under parametric uncertainties. ISA TRANSACTIONS 2023; 137:275-287. [PMID: 36710219 DOI: 10.1016/j.isatra.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/13/2022] [Accepted: 01/14/2023] [Indexed: 06/04/2023]
Abstract
The problem of state observation in incommensurate fractional order systems has been poorly studied. Currently some observers that have been proposed are based on a copy of the system, which causes them to be highly dependent on the system parameters, additionally they are redundant (estimate variables that are available). So this paper proposes a novel fractional observer against parametric uncertainties for a certain type of incommensurate fractional order systems. The fractional observer design is based on a property concerning observability in incommensurate fractional order systems which allows us to construct the observer only considering the available output and its fractional derivatives. On the other hand, the convergence analysis of the observation error is carried out using a particular approach of fractional order systems related to the Global Mittag-Leffler boundedness. We prove that there is a compact set GMLA (Globally Mittag-Leffler Attractive, according to Definition 4) where the system that represents the observation error dynamics is attractive and we also prove that the observation error is uniformly bounded. Additionally, the fractional observer is model-free i.e., a system copy is not required, this gives robustness in spite of parametric uncertainties and it is also reduced order therefore one observer must be designed for each variable that we want to estimate consequently the observer is non-redundant (no estimation of variables that are already available). Moreover, our proposed fractional observer can be designed for commensurate fractional order systems and we also show that if we consider integer derivative order, the proposed fractional observer presents certain properties. Finally, in order to show the effectiveness of the proposed fractional observer, an incommensurate fractional order Rössler hyperchaotic system is considered as a numerical example and an incommensurate fractional model of the COVID-19 pandemic as a real-world application.
Collapse
Affiliation(s)
- Lorenz Josue Oliva-Gonzalez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Mexico City, Mexico.
| | - Rafael Martínez-Guerra
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Mexico City, Mexico.
| | - Juan Pablo Flores-Flores
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Mexico City, Mexico.
| |
Collapse
|
5
|
Ding Z, Yang L, Ye Y, Li S, Huang Z. Passivity and passification of fractional-order memristive neural networks with time delays. ISA TRANSACTIONS 2023; 137:314-322. [PMID: 36746695 DOI: 10.1016/j.isatra.2023.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 06/04/2023]
Abstract
A class of fractional-order memristive neural networks (FMNNs) with time delays is studied. At first, the original network system is converted to fractional-order uncertain one to simplify the analysis by a variable transformation. Successively, some new LMIs-based passivity criteria are derived by differential inclusions, set-valued maps, inequality techniques and linear matrix inequality approach. Furthermore, a feedback control protocol is designed to solve the passification problem for the considered system, whose feedback control effect on different neurons can be changed artificially, which can be better applied to neural networks. The obtained results include some existing ones as special cases. A numerical example is proposed to illustrate the theoretical results.
Collapse
Affiliation(s)
- Zhixia Ding
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Le Yang
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yanyan Ye
- School of Automation, Guangdong University of Technology, Guangzhou 510006, China.
| | - Sai Li
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zixin Huang
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
6
|
Delay-dependent and Order-dependent Conditions for Stability and Stabilization of Fractional-order Memristive Neural Networks with Time-varying Delays. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Novel controller design for finite-time synchronization of fractional-order memristive neural networks. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.09.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Fixed-Time Control for Memristor-Based Quaternion-Valued Neural Networks with Discontinuous Activation Functions. Cognit Comput 2022. [DOI: 10.1007/s12559-022-10057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Arbitrary surface data patching method based on geometric convolutional neural network. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Zhang T, Jian J. Quantized intermittent control tactics for exponential synchronization of quaternion-valued memristive delayed neural networks. ISA TRANSACTIONS 2022; 126:288-299. [PMID: 34330433 DOI: 10.1016/j.isatra.2021.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
This article studies the global exponential synchronization (GES) of quaternion-valued memristive delayed neural networks (QVMDNNs) by quantized intermittent control (QIC). Without decomposing the original systems into usual real-valued or complex-valued ones, the discussed system is directly processed in both cases of the differential inclusion theory. Based on two QIC strategies and applying Lyapunov functional method and inequality techniques, several new delay-dependent criteria in the form of real-valued algebraic inequalities are directly derived to assure the GES of the concerned system. Compared to the traditional feedback control, the QIC strategy can reduce the control expenses and shorten time to achieve the GES. Ultimately, two examples are given to validate the effectiveness and advantages of the proposed outcomes.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Science, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Jigui Jian
- College of Science, China Three Gorges University, Yichang, Hubei, 443002, China.
| |
Collapse
|
11
|
Local Lagrange Exponential Stability Analysis of Quaternion-Valued Neural Networks with Time Delays. MATHEMATICS 2022. [DOI: 10.3390/math10132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study on the local stability of quaternion-valued neural networks is of great significance to the application of associative memory and pattern recognition. In the research, we study local Lagrange exponential stability of quaternion-valued neural networks with time delays. By separating the quaternion-valued neural networks into a real part and three imaginary parts, separating the quaternion field into 34n subregions, and using the intermediate value theorem, sufficient conditions are proposed to ensure quaternion-valued neural networks have 34n equilibrium points. According to the Halanay inequality, the conditions for the existence of 24n local Lagrange exponentially stable equilibria of quaternion-valued neural networks are established. The obtained stability results improve and extend the existing ones. Under the same conditions, quaternion-valued neural networks have more stable equilibrium points than complex-valued neural networks and real-valued neural networks. The validity of the theoretical results were verified by an example.
Collapse
|
12
|
Gao H, He W, Zhang L, Sun C. Neural-Network Control of a Stand-Alone Tall Building-Like Structure With an Eccentric Load: An Experimental Investigation. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:4083-4094. [PMID: 33147153 DOI: 10.1109/tcyb.2020.3006206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article develops a finite-dimensional dynamic model to describe a stand-alone tall building-like structure with an eccentric load by using the assumed mode method (AMM). To compensate for the dynamic uncertainties, a new neural-network (NN) control strategy is designed to suppress vibrations of the tall buildings. The output constraint on the angle of the pendulum is also considered, and such an angle can be ensured within the safety limit by incorporating a barrier Lyapunov function. The semiglobally uniform ultimate boundness (SGUUB) of the closed-loop system is proved via Lyapunov's stability. The simulation results reveal that the new NN strategy can effectively realize vibration suppression in the flexible beam and pendulum. The effectiveness of the new NN approach is further verified through the experiments on the Quanser smart structure.
Collapse
|
13
|
|
14
|
Lagrange Stability of BAM Quaternion-Valued Inertial Neural Networks via Auxiliary Function-Based Integral Inequalities. Neural Process Lett 2022. [DOI: 10.1007/s11063-021-10685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Finite-Time Passivity Analysis of Neutral-Type Neural Networks with Mixed Time-Varying Delays. MATHEMATICS 2021. [DOI: 10.3390/math9243321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research study investigates the issue of finite-time passivity analysis of neutral-type neural networks with mixed time-varying delays. The time-varying delays are distributed, discrete and neutral in that the upper bounds for the delays are available. We are investigating the creation of sufficient conditions for finite boundness, finite-time stability and finite-time passivity, which has never been performed before. First, we create a new Lyapunov–Krasovskii functional, Peng–Park’s integral inequality, descriptor model transformation and zero equation use, and then we use Wirtinger’s integral inequality technique. New finite-time stability necessary conditions are constructed in terms of linear matrix inequalities in order to guarantee finite-time stability for the system. Finally, numerical examples are presented to demonstrate the result’s effectiveness. Moreover, our proposed criteria are less conservative than prior studies in terms of larger time-delay bounds.
Collapse
|
16
|
Quantization synchronization of chaotic neural networks with time delay under event-triggered strategy. Cogn Neurodyn 2021; 15:897-914. [PMID: 34603550 DOI: 10.1007/s11571-021-09667-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/06/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022] Open
Abstract
This paper shows solicitude for the quantization synchronization of delayed chaotic master and slave neural networks under an dynamic event-triggered strategy. In virtue of a generalized Halanay-type inequality, a theoretical criterion for quasi-synchronization of master and slave neural networks is derived. Meanwhile, we can obtain an exact upper bound of synchronization error by using this criterion. Compared with output feedback controller with event triggering and quantization, the case where the controller only affected by quantization is also considered. Then, we exclude the Zeno behavior of the event-triggered controller. A sufficient criterion for the existence of the quantized output feedback controllers is also provided. A numerical example is cited to illustrate the efficiency of our theoretical criteria. In addition, some experiments of secure image communication are conducted under quasi-synchronization of master and slave neural networks.
Collapse
|
17
|
Wan P, Sun D, Zhao M. Producing Stable Periodic Solutions of Switched Impulsive Delayed Neural Networks Using a Matrix-Based Cubic Convex Combination Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3998-4012. [PMID: 32857702 DOI: 10.1109/tnnls.2020.3016421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article is dedicated to designing a novel periodic impulsive control strategy for producing globally exponentially stable periodic solutions for switched neural networks with discrete and finite distributed time-varying delays. First, tunable parameters and cubic convex combination approach are proposed to study the globally exponential convergence of switched neural networks. Second, a sufficient criterion for the existence, uniqueness, and globally exponential stability of a periodic solution is demonstrated by using contraction mapping theorem and the impulse-delay-dependent Lyapunov-Krasovskii functional method. It is worth emphasizing that the addressed Lyapunov-Krasovskii functional covers both triple integral terms and novel quadruple integral terms, which makes the conservatism of the above criteria decrease. Even if the original neural network models are unstable or the impulsive effects are strong, the addressed neural network model can produce a globally exponentially stable periodic solution. These results here, which include boundedness, globally uniformly exponential convergence, and globally exponentially stability of the periodic solution, generalize and improve the earlier publications. Finally, two numerical examples and their computer simulations are given to show the effectiveness of theoretical results.
Collapse
|
18
|
|
19
|
Sheng Y, Huang T, Zeng Z, Miao X. Global Exponential Stability of Memristive Neural Networks With Mixed Time-Varying Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3690-3699. [PMID: 32857700 DOI: 10.1109/tnnls.2020.3015944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article investigates the Lagrange exponential stability and the Lyapunov exponential stability of memristive neural networks with discrete and distributed time-varying delays (DMNNs). By means of inequality techniques, theories of the M-matrix, and the comparison strategy, the Lagrange exponential stability of the underlying DMNNs is considered in the sense of Filippov, and the globally exponentially attractive set is estimated through employing the M-matrix and external input. Especially, when the external input is not concerned, the Lyapunov exponential stability of the corresponding DMNNs is developed immediately in the form of an M-matrix, which contains some published outcomes as special cases. Furthermore, by constructing an M-matrix-based differential system, the Lyapunov exponential stability of the DMNNs is studied, which is less conservative than some existing ones. Finally, three simulation examples are carried out to examine the validness of the theories.
Collapse
|
20
|
He H, Liu X, Cao J, Jiang N. Finite/Fixed-Time Synchronization of Delayed Inertial Memristive Neural Networks with Discontinuous Activations and Disturbances. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10552-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
|
22
|
Liu YJ, Gong M, Liu L, Tong S, Chen CLP. Fuzzy Observer Constraint Based on Adaptive Control for Uncertain Nonlinear MIMO Systems With Time-Varying State Constraints. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:1380-1389. [PMID: 31478886 DOI: 10.1109/tcyb.2019.2933700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article presents an adaptive output feedback approach of nonlinear multi-input-multi-output (MIMO) systems with time-varying state constraints and unmeasured states. An adaptive approximator is designed to approximate the unknown nonlinear functions existing in the state-constrained systems with immeasurable states. To deal with the tracking problem of such systems, a state observer with time-varying barrier Lyapunov functions (BLFs) is introduced in the controller design procedure. The backstepping design with time-varying BLFs is utilized to guarantee that all system states remain within the time-varying-constrained interval. The constant constraint is only the special case of the time-varying constraint which is more general in the real systems. The proposed control approach guarantees that all signals in the closed-loop systems are bounded and the tracking errors converge to a bounded compact set, and time-varying full-state constraints are never violated. A simulation example is given to confirm the feasibility of the presented control approach in this article.
Collapse
|
23
|
Stamov T, Stamova I. Design of impulsive controllers and impulsive control strategy for the Mittag-Leffler stability behavior of fractional gene regulatory networks. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Guo Z, Wang S, Wang J. Global Exponential Synchronization of Coupled Delayed Memristive Neural Networks With Reaction-Diffusion Terms via Distributed Pinning Controls. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:105-116. [PMID: 32191900 DOI: 10.1109/tnnls.2020.2977099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article presents new theoretical results on global exponential synchronization of nonlinear coupled delayed memristive neural networks with reaction-diffusion terms and Dirichlet boundary conditions. First, a state-dependent memristive neural network model is introduced in terms of coupled partial differential equations. Next, two control schemes are introduced: distributed state feedback pinning control and distributed impulsive pinning control. A salient feature of these two pinning control schemes is that only partial information on the neighbors of pinned nodes is needed. By utilizing the Lyapunov stability theorem and Divergence theorem, sufficient criteria are derived to ascertain the global exponential synchronization of coupled neural networks via the two pining control schemes. Finally, two illustrative examples are elaborated to substantiate the theoretical results and demonstrate the advantages and disadvantages of the two control schemes.
Collapse
|
25
|
Yu Y, Wang X, Zhong S, Yang N, Tashi N. Extended Robust Exponential Stability of Fuzzy Switched Memristive Inertial Neural Networks With Time-Varying Delays on Mode-Dependent Destabilizing Impulsive Control Protocol. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:308-321. [PMID: 32217485 DOI: 10.1109/tnnls.2020.2978542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates the problem of robust exponential stability of fuzzy switched memristive inertial neural networks (FSMINNs) with time-varying delays on mode-dependent destabilizing impulsive control protocol. The memristive model presented here is treated as a switched system rather than employing the theory of differential inclusion and set-value map. To optimize the robust exponentially stable process and reduce the cost of time, hybrid mode-dependent destabilizing impulsive and adaptive feedback controllers are simultaneously applied to stabilize FSMINNs. In the new model, the multiple impulsive effects exist between two switched modes, and the multiple switched effects may also occur between two impulsive instants. Based on switched analysis techniques, the Takagi-Sugeno (T-S) fuzzy method, and the average dwell time, extended robust exponential stability conditions are derived. Finally, simulation is provided to illustrate the effectiveness of the results.
Collapse
|
26
|
State bounding for fuzzy memristive neural networks with bounded input disturbances. Neural Netw 2020; 134:163-172. [PMID: 33316722 DOI: 10.1016/j.neunet.2020.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/30/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
This paper investigates the state bounding problem of fuzzy memristive neural networks (FMNNs) with bounded input disturbances. By using the characters of Metzler, Hurwitz and nonnegative matrices, this paper obtains the exact delay-independent and delay-dependent boundary ranges of the solution, which have less conservatism than the results in existing literatures. The validity of the results is verified by two numerical examples.
Collapse
|
27
|
Wang L, He H, Zeng Z, Hu C. Global Stabilization of Fuzzy Memristor-Based Reaction-Diffusion Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4658-4669. [PMID: 31725407 DOI: 10.1109/tcyb.2019.2949468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates the global stabilization problem of Takagi-Sugeno fuzzy memristor-based neural networks with reaction-diffusion terms and distributed time-varying delays. By using the Green formula and proposing fuzzy feedback controllers, several algebraic criteria dependent on the diffusion coefficients are established to guarantee the global exponential stability of the addressed networks. Moreover, a simpler stability criterion is obtained by designing an adaptive fuzzy controller. The results derived in this article are generalized and include some existing ones as special cases. Finally, the validity of the theoretical results is verified by two examples.
Collapse
|
28
|
Yue X, Song Y, Zou J, He W. Adaptive boundary control of a vibrating cantilever nanobeam considering small scale effects. ISA TRANSACTIONS 2020; 105:77-85. [PMID: 32616355 DOI: 10.1016/j.isatra.2020.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/29/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
This paper presents vibration control analysis for a cantilever nanobeam system. The dynamics of the system is obtained by the non-local elastic relationship which characterizes the small scale effects. The boundary conditions and governing equation are respectively expressed by several ordinary differential equations (ODE) and a partial differential equation (PDE) with the help of the Hamilton's principle. Model-based control and adaptive control are both designed at the free end to regulate the vibration in the control section. By employing the Lyapunov stability approach, the system state can be proven to be substantiated to converge to zero's small neighbourhood with appropriate parameters. Simulation results illustrate that the designed control is feasible for the nanobeam system.
Collapse
Affiliation(s)
- Xinling Yue
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuhua Song
- The Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China; The School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianxiao Zou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - We He
- The Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China; The School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
29
|
Xiao Q, Huang T, Zeng Z. Stabilization of Nonautonomous Recurrent Neural Networks With Bounded and Unbounded Delays on Time Scales. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4307-4317. [PMID: 31265426 DOI: 10.1109/tcyb.2019.2922207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A class of nonautonomous recurrent neural networks (NRNNs) with time-varying delays is considered on time scales. Bounded delays and unbounded delays have been taken into consideration, respectively. First, a new generalized Halanay inequality on time scales is constructed by time-scale theory and some analytical techniques. Based on this inequality, the stabilization of NRNNs with bounded delays is discussed on time scales. The results are also applied to the synchronization of a class of drive-response NRNNs. Furthermore, the stabilization of NRNNs with unbounded delays is investigated. Especially, the stabilization of NRNNs with proportional delays is obtained without any variable transformation. The obtained generalized Halanay inequality on time scales develops and extends some existing ones in the literature. The stabilization criteria for the NRNNs with bounded or unbounded delays cover the results of continuous-time and discrete-time NRNNs and hold the results for the systems that involved on time interval as well. Some examples are given to demonstrate the validity of the results. An application to image encryption and decryption is addressed.
Collapse
|
30
|
Global Stabilization of Memristive Neural Networks with Leakage and Time-Varying Delays Via Quantized Sliding-Mode Controller. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10356-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Neural networks-based adaptive dynamic surface control for vehicle active suspension systems with time-varying displacement constraints. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.08.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Zhu S, Liu D, Yang C, Fu J. Synchronization of Memristive Complex-Valued Neural Networks With Time Delays via Pinning Control Method. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:3806-3815. [PMID: 31689227 DOI: 10.1109/tcyb.2019.2946703] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article concentrates on the synchronization problem of memristive complex-valued neural networks (CVNNs) with time delays via the pinning control method. Different from general control schemes, the pinning control is beneficial to reduce the control cost by pinning the fractional nodes instead of all ones. By separating the complex-valued system into two equivalent real-valued systems and employing the Lyapunov functional as well as some inequality techniques, the asymptotic synchronization criterion is given to guarantee the realization of synchronization of memristive CVNNs. Meanwhile, sufficient conditions for exponential synchronization of the considered systems is also proposed. Finally, the validity of our proposed results is verified by a numerical example.
Collapse
|
33
|
Duan L, Wang Q, Wei H, Wang Z. Multi-type synchronization dynamics of delayed reaction-diffusion recurrent neural networks with discontinuous activations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.03.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Sheng Y, Lewis FL, Zeng Z, Huang T. Lagrange Stability and Finite-Time Stabilization of Fuzzy Memristive Neural Networks With Hybrid Time-Varying Delays. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:2959-2970. [PMID: 31059467 DOI: 10.1109/tcyb.2019.2912890] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper focuses on Lagrange exponential stability and finite-time stabilization of Takagi-Sugeno (T-S) fuzzy memristive neural networks with discrete and distributed time-varying delays (DFMNNs). By resorting to theories of differential inclusions and the comparison strategy, an algebraic condition is developed to confirm Lagrange exponential stability of the underlying DFMNNs in Filippov's sense, and the exponentially attractive set is estimated. When external input is not considered, global exponential stability of DFMNNs is derived directly, which includes some existing ones as special cases. Furthermore, finite-time stabilization of the addressed DFMNNs is analyzed by exploiting inequality techniques and the comparison approach via designing a nonlinear state feedback controller. The boundedness assumption of activation functions is removed herein. Finally, two simulations are presented to demonstrate the validness of the outcomes, and an application is performed in pseudorandom number generation.
Collapse
|
35
|
Zhang D, Kong L, Zhang S, Li Q, Fu Q. Neural networks-based fixed-time control for a robot with uncertainties and input deadzone. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Liu H, Ma L, Wang Z, Liu Y, Alsaadi FE. An overview of stability analysis and state estimation for memristive neural networks. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Ren J, Song Q, Gao Y, Lu G. Leader-following bipartite consensus of second-order time-delay nonlinear multi-agent systems with event-triggered pinning control under signed digraph. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.12.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Chen C, Zhu S, Wei Y, Chen C. Finite-Time Stability of Delayed Memristor-Based Fractional-Order Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:1607-1616. [PMID: 30418930 DOI: 10.1109/tcyb.2018.2876901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper studies one type of delayed memristor-based fractional-order neural networks (MFNNs) on the finite-time stability problem. By using the method of iteration, contracting mapping principle, the theory of differential inclusion, and set-valued mapping, a new criterion for the existence and uniqueness of the equilibrium point which is stable in finite time of considered MFNNs is established when the order α satisfies . Then, when , on the basis of generalized Gronwall inequality and Laplace transform, a sufficient condition ensuring the considered MFNNs stable in finite time is given. Ultimately, simulation examples are proposed to demonstrate the validity of the results.
Collapse
|
39
|
Quantized synchronization of memristive neural networks with time-varying delays via super-twisting algorithm. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Wang X, Park JH, Zhong S, Yang H. A Switched Operation Approach to Sampled-Data Control Stabilization of Fuzzy Memristive Neural Networks With Time-Varying Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:891-900. [PMID: 31059457 DOI: 10.1109/tnnls.2019.2910574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper investigates the issue of sampled-data stabilization for Takagi-Sugeno fuzzy memristive neural networks (FMNNs) with time-varying delay. First, the concerned FMNNs are transformed into the tractable fuzzy NNs based on the excitatory and inhibitory of memristive synaptic weights using a new convex combination technique. Meanwhile, a switched fuzzy sampled-data controller is employed for the first time to tackle stability problems related to FMNNs. Then, the novel stabilization criteria of the FMNNs are established using the fuzzy membership functions (FMFs)-dependent Lyapunov-Krasovskii functional. This sufficiently utilizes information from not only the delayed state and the actual sampling pattern but also the FMFs. Two simulation examples are presented to demonstrate the feasibility and validity of the proposed method.
Collapse
|
41
|
Duan L, Jian J. Global Lagrange Stability of Inertial Neutral Type Neural Networks with Mixed Time-Varying Delays. Neural Process Lett 2020. [DOI: 10.1007/s11063-019-10177-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Wang S, Guo Z, Wen S, Huang T, Gong S. Finite/fixed-time synchronization of delayed memristive reaction-diffusion neural networks. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.06.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Chen L, Huang T, Tenreiro Machado J, Lopes AM, Chai Y, Wu R. Delay-dependent criterion for asymptotic stability of a class of fractional-order memristive neural networks with time-varying delays. Neural Netw 2019; 118:289-299. [DOI: 10.1016/j.neunet.2019.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/04/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022]
|
44
|
Wei R, Cao J. Synchronization control of quaternion-valued memristive neural networks with and without event-triggered scheme. Cogn Neurodyn 2019; 13:489-502. [PMID: 31565093 DOI: 10.1007/s11571-019-09545-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 11/29/2022] Open
Abstract
In this paper, the real-valued memristive neural networks (MNNs) are extended to quaternion field, a new class of neural networks named quaternion-valued memristive neural networks (QVMNNs) is then established. The problem of master-slave synchronization of this type of networks is investigated in this paper. Two types of controllers are designed: the traditional feedback controller and the event-triggered controller. Corresponding synchronization criteria are then derived based on Lyapunov method. Moreover, it is demonstrated that Zeno behavior can be avoided in case of the event-triggered strategy proposed in this work. Finally, corresponding simulation examples are proposed to demonstrate the correctness of the proposed results derived in this work.
Collapse
Affiliation(s)
- Ruoyu Wei
- Research Center for Complex Systems and Network Sciences, and School of Mathematics, Southeast University, Nanjing, 210096 China
| | - Jinde Cao
- Research Center for Complex Systems and Network Sciences, and School of Mathematics, Southeast University, Nanjing, 210096 China
| |
Collapse
|
45
|
Liu D, Zhu S, Sun K. Global Anti-Synchronization of Complex-Valued Memristive Neural Networks With Time Delays. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:1735-1747. [PMID: 29993825 DOI: 10.1109/tcyb.2018.2812708] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper formulates a class of complex-valued memristive neural networks as well as investigates the problem of anti-synchronization for complex-valued memristive neural networks. Under the concept of drive-response, several sufficient conditions for guaranteeing the anti-synchronization are given by employing suitable Lyapunov functional and some inequality techniques. The proposed results of this paper are less conservative than existing literatures due to the characteristics of memristive complex-valued neural networks. Moreover, the proposed results are easy to be validated with the parameters of system itself. Finally, two examples with numerical simulations are showed to demonstrate the efficiency of our theoretical results.
Collapse
|
46
|
Zhang F, Zeng Z. Multiple ψ -Type Stability and Its Robustness for Recurrent Neural Networks With Time-Varying Delays. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:1803-1815. [PMID: 29993797 DOI: 10.1109/tcyb.2018.2813979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, the ψ -type stability and robustness of recurrent neural networks are investigated by using the differential inequality. By utilizing ψ -type functions combined with the inequality techniques, some sufficient conditions ensuring ψ -type stability and robustness are derived for linear neural networks with time-varying delays. Then, by choosing appropriate Lipschitz coefficient in subregion, some algebraic criteria of the multiple ψ -type stability and robust boundedness are established for the delayed neural networks with time-varying delays. For special cases, several criteria are also presented by selecting parameters with easy implementation. The derived results cover both ψ -type mono-stability and multiple ψ -type stability. In addition, these theoretical results contain exponential stability, polynomial stability, and μ -stability, and they also complement and extend some previous results. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed criteria.
Collapse
|
47
|
Fixed-time synchronization of quaternion-valued memristive neural networks with time delays. Neural Netw 2019; 113:1-10. [DOI: 10.1016/j.neunet.2019.01.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/01/2018] [Accepted: 01/23/2019] [Indexed: 11/21/2022]
|
48
|
Sheng Y, Lewis FL, Zeng Z. Exponential Stabilization of Fuzzy Memristive Neural Networks With Hybrid Unbounded Time-Varying Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:739-750. [PMID: 30047913 DOI: 10.1109/tnnls.2018.2852497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper is concerned with exponential stabilization for a class of Takagi-Sugeno fuzzy memristive neural networks (FMNNs) with unbounded discrete and distributed time-varying delays. Under the framework of Filippov solutions, algebraic criteria are established to guarantee exponential stabilization of the addressed FMNNs with hybrid unbounded time delays via designing a fuzzy state feedback controller by exploiting inequality techniques, calculus theorems, and theories of fuzzy sets. The obtained results in this paper enhance and generalize some existing ones. Meanwhile, a general theoretical framework is proposed to investigate the dynamical behaviors of various neural networks with mixed infinite time delays. Finally, two simulation examples are performed to illustrate the validity of the derived outcomes.
Collapse
|
49
|
Exponential stability in Lagrange sense for inertial neural networks with time-varying delays. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.12.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Xiong W, Yu X, Patel R, Huang T. Stability of Singular Discrete-Time Neural Networks With State-Dependent Coefficients and Run-to-Run Control Strategies. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:6415-6420. [PMID: 29994546 DOI: 10.1109/tnnls.2018.2829172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this brief, sustaining and intermittent run-to-run controllers are designed to achieve the stability of singular discrete-time neural networks with state-dependent coefficients. The controllers are designed for two reasons: 1) it is very difficult and almost impossible to only measure the in situ feedback information for the controllers and 2) the controllers may not always exist at any time. The stability is then established for singular discrete-time neural networks with state-dependent coefficients. Finally, numerical simulations are shown to illustrate the usefulness of the obtained criteria.
Collapse
|