• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695755)   Today's Articles (19)
For: Chakraborty R, Pal NR. Feature selection using a neural framework with controlled redundancy. IEEE Trans Neural Netw Learn Syst 2015;26:35-50. [PMID: 25532154 DOI: 10.1109/tnnls.2014.2308902] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Number Cited by Other Article(s)
1
Guo Y, Sun Y, Wang Z, Nie F, Wang F. Double-Structured Sparsity Guided Flexible Embedding Learning for Unsupervised Feature Selection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:13354-13367. [PMID: 37167052 DOI: 10.1109/tnnls.2023.3267184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
2
Xu W, Huang M, Jiang Z, Qian Y. Graph-Based Unsupervised Feature Selection for Interval-Valued Information System. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:12576-12589. [PMID: 37067967 DOI: 10.1109/tnnls.2023.3263684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
3
Wang Y, Wang W, Pal NR. Supervised Feature Selection via Collaborative Neurodynamic Optimization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:6878-6892. [PMID: 36306292 DOI: 10.1109/tnnls.2022.3213167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
4
Chen H, Nie F, Wang R, Li X. Unsupervised Feature Selection With Flexible Optimal Graph. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:2014-2027. [PMID: 35839204 DOI: 10.1109/tnnls.2022.3186171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
5
Wang R, Bian J, Nie F, Li X. Nonlinear Feature Selection Neural Network via Structured Sparse Regularization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:9493-9505. [PMID: 36395136 DOI: 10.1109/tnnls.2022.3209716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
6
A joint multiobjective optimization of feature selection and classifier design for high-dimensional data classification. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
7
Wang Y, Wang J. Neurodynamics-driven holistic approaches to semi-supervised feature selection. Neural Netw 2022;157:377-386. [DOI: 10.1016/j.neunet.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
8
Zheng J, Qu H, Li Z, Li L, Tang X, Guo F. A novel autoencoder approach to feature extraction with linear separability for high-dimensional data. PeerJ Comput Sci 2022;8:e1061. [PMID: 37547057 PMCID: PMC10403198 DOI: 10.7717/peerj-cs.1061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 08/08/2023]
9
Gong X, Yu L, Wang J, Zhang K, Bai X, Pal NR. Unsupervised feature selection via adaptive autoencoder with redundancy control. Neural Netw 2022;150:87-101. [DOI: 10.1016/j.neunet.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/21/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
10
Multi-classification for high-dimensional data using probabilistic neural networks. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
11
Shu L, Huang K, Jiang W, Wu W, Liu H. Feature selection using autoencoders with Bayesian methods to high-dimensional data. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-211348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
12
Zhang S, Dang X, Nguyen D, Wilkins D, Chen Y. Estimating Feature-Label Dependence Using Gini Distance Statistics. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021;43:1947-1963. [PMID: 31869782 DOI: 10.1109/tpami.2019.2960358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
13
Wang Y, Wang J, Che H. Two-timescale neurodynamic approaches to supervised feature selection based on alternative problem formulations. Neural Netw 2021;142:180-191. [PMID: 34020085 DOI: 10.1016/j.neunet.2021.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
14
Wang J, Zhang H, Wang J, Pu Y, Pal NR. Feature Selection Using a Neural Network With Group Lasso Regularization and Controlled Redundancy. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:1110-1123. [PMID: 32396104 DOI: 10.1109/tnnls.2020.2980383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
15
Wang Y, Li X, Wang J. A neurodynamic optimization approach to supervised feature selection via fractional programming. Neural Netw 2021;136:194-206. [PMID: 33497995 DOI: 10.1016/j.neunet.2021.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/04/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022]
16
Xie X, Zhang H, Wang J, Chang Q, Wang J, Pal NR. Learning Optimized Structure of Neural Networks by Hidden Node Pruning With L1 Regularization. IEEE TRANSACTIONS ON CYBERNETICS 2020;50:1333-1346. [PMID: 31765323 DOI: 10.1109/tcyb.2019.2950105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
17
Conjugate gradient-based Takagi-Sugeno fuzzy neural network parameter identification and its convergence analysis. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
18
Fully complex conjugate gradient-based neural networks using Wirtinger calculus framework: Deterministic convergence and its application. Neural Netw 2019;115:50-64. [DOI: 10.1016/j.neunet.2019.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/15/2019] [Accepted: 02/28/2019] [Indexed: 11/16/2022]
19
Gao S, Zhou M, Wang Y, Cheng J, Yachi H, Wang J. Dendritic Neuron Model With Effective Learning Algorithms for Classification, Approximation, and Prediction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019;30:601-614. [PMID: 30004892 DOI: 10.1109/tnnls.2018.2846646] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
20
Du X, Nie F, Wang W, Yang Y, Zhou X. Exploiting Combination Effect for Unsupervised Feature Selection by l2,0 Norm. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019;30:201-214. [PMID: 29994229 DOI: 10.1109/tnnls.2018.2837100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
21
Armanfard N, Reilly JP, Komeili M. Logistic Localized Modeling of the Sample Space for Feature Selection and Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;29:1396-1413. [PMID: 28333643 DOI: 10.1109/tnnls.2017.2676101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
22
Sun J, Zhou A, Keates S, Liao S. Simultaneous Bayesian Clustering and Feature Selection Through Student's ${t}$ Mixtures Model. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;29:1187-1199. [PMID: 28362615 DOI: 10.1109/tnnls.2016.2619061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
23
Yu K, Wu X, Ding W, Mu Y, Wang H. Markov Blanket Feature Selection Using Representative Sets. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:2775-2788. [PMID: 28113384 DOI: 10.1109/tnnls.2016.2602365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
24
Maximum relevance minimum common redundancy feature selection for nonlinear data. Inf Sci (N Y) 2017. [DOI: 10.1016/j.ins.2017.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
25
Sun K, Huang SH, Wong DSH, Jang SS. Design and Application of a Variable Selection Method for Multilayer Perceptron Neural Network With LASSO. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:1386-1396. [PMID: 28113826 DOI: 10.1109/tnnls.2016.2542866] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
26
Che J, Yang Y. Stochastic correlation coefficient ensembles for variable selection. J Appl Stat 2016. [DOI: 10.1080/02664763.2016.1221913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
27
Li Z, Tang J. Unsupervised Feature Selection via Nonnegative Spectral Analysis and Redundancy Control. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2015;24:5343-5355. [PMID: 26394422 DOI: 10.1109/tip.2015.2479560] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA