• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695764)   Today's Articles (386)
For: Rakkiyappan R, Cao J, Velmurugan G. Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 2015;26:84-97. [PMID: 25532158 DOI: 10.1109/tnnls.2014.2311099] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Number Cited by Other Article(s)
1
Panda SK, Abdeljawad T, Nagy AM. On uniform stability and numerical simulations of complex valued neural networks involving generalized Caputo fractional order. Sci Rep 2024;14:4073. [PMID: 38374277 PMCID: PMC11269755 DOI: 10.1038/s41598-024-53670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024]  Open
2
Meng X, Li Z, Cao J. Almost periodic quasi-projective synchronization of delayed fractional-order quaternion-valued neural networks. Neural Netw 2024;169:92-107. [PMID: 37864999 DOI: 10.1016/j.neunet.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
3
Ma Y, Dai Y. Stability and Hopf bifurcation analysis of a fractional-order ring-hub structure neural network with delays under parameters delay feedback control. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023;20:20093-20115. [PMID: 38052638 DOI: 10.3934/mbe.2023890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
4
Liu Y, Shen B, Sun J. Stability and synchronization for complex-valued neural networks with stochastic parameters and mixed time delays. Cogn Neurodyn 2023;17:1213-1227. [PMID: 37786660 PMCID: PMC10542069 DOI: 10.1007/s11571-022-09823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]  Open
5
Liu CG, Wang JL, Wu HN. Finite-Time Passivity for Coupled Fractional-Order Neural Networks With Multistate or Multiderivative Couplings. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:5976-5987. [PMID: 34928805 DOI: 10.1109/tnnls.2021.3132069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
6
Cao J, Udhayakumar K, Rakkiyappan R, Li X, Lu J. A Comprehensive Review of Continuous-/Discontinuous-Time Fractional-Order Multidimensional Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:5476-5496. [PMID: 34962883 DOI: 10.1109/tnnls.2021.3129829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
7
Che F, Ahmed QZ, Lazaridis PI, Sureephong P, Alade T. Indoor Positioning System (IPS) Using Ultra-Wide Bandwidth (UWB)-For Industrial Internet of Things (IIoT). SENSORS (BASEL, SWITZERLAND) 2023;23:5710. [PMID: 37420883 PMCID: PMC10304790 DOI: 10.3390/s23125710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
8
Wang JL, Du XY, Liu CG. Synchronization and adaptive control for coupled fractional-order reaction-diffusion neural networks with multiple couplings. ISA TRANSACTIONS 2023;136:93-103. [PMID: 36437172 DOI: 10.1016/j.isatra.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 05/16/2023]
9
Dong T, Xiang W, Huang T, Li H. Pattern Formation in a Reaction-Diffusion BAM Neural Network With Time Delay: (k1, k2) Mode Hopf-Zero Bifurcation Case. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:7266-7276. [PMID: 34111006 DOI: 10.1109/tnnls.2021.3084693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
10
Chen L, Gu P, Lopes AM, Chai Y, Xu S, Ge S. Asymptotic Stability of Fractional-Order Incommensurate Neural Networks. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-11095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
11
Hui M, Zhang J, Iu HHC, Yao R, Bai L. A novel intermittent sliding mode control approach to finite-time synchronization of complex-valued neural networks. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.09.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
12
Stability of Memristor-based Fractional-order Neural Networks with Mixed Time-delay and Impulsive. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-11061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
13
Encoding–decoding-based secure filtering for neural networks under mixed attacks. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
14
Chen D, Li S. DRDNN: A robust model for time-variant nonlinear optimization under multiple equality and inequality constraints. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
15
Li H, Kao Y, Bao H, Chen Y. Uniform Stability of Complex-Valued Neural Networks of Fractional Order With Linear Impulses and Fixed Time Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:5321-5331. [PMID: 33852395 DOI: 10.1109/tnnls.2021.3070136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
16
Extended analysis on the global Mittag-Leffler synchronization problem for fractional-order octonion-valued BAM neural networks. Neural Netw 2022;154:491-507. [DOI: 10.1016/j.neunet.2022.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/16/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
17
Double Features Zeroing Neural Network Model for Solving the Pseudoninverse of a Complex-Valued Time-Varying Matrix. MATHEMATICS 2022. [DOI: 10.3390/math10122122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
18
Long C, Zhang G, Zeng Z, Hu J. Finite-time stabilization of complex-valued neural networks with proportional delays and inertial terms: A non-separation approach. Neural Netw 2022;148:86-95. [DOI: 10.1016/j.neunet.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
19
Global Exponential Stability of Fractional Order Complex-Valued Neural Networks with Leakage Delay and Mixed Time Varying Delays. FRACTAL AND FRACTIONAL 2022. [DOI: 10.3390/fractalfract6030140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
20
Viera-Martin E, Gómez-Aguilar JF, Solís-Pérez JE, Hernández-Pérez JA, Escobar-Jiménez RF. Artificial neural networks: a practical review of applications involving fractional calculus. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022;231:2059-2095. [PMID: 35194484 PMCID: PMC8853315 DOI: 10.1140/epjs/s11734-022-00455-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 01/13/2022] [Indexed: 05/13/2023]
21
Udhayakumar K, Rakkiyappan R, Rihan FA, Banerjee S. Projective Multi-Synchronization of Fractional-order Complex-valued Coupled Multi-stable Neural Networks with Impulsive Control. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
22
Xiao J, Li Y, Wen S. Mittag-Leffler synchronization and stability analysis for neural networks in the fractional-order multi-dimension field. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
23
Li H, Kao Y. Global Mittag-Leffler stability and existence of the solution for fractional-order complex-valued NNs with asynchronous time delays. CHAOS (WOODBURY, N.Y.) 2021;31:113110. [PMID: 34881590 DOI: 10.1063/5.0059887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
24
Novel global polynomial stability criteria of impulsive complex-valued neural networks with multi-proportional delays. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06555-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
25
Chen D, Cao X, Li S. A multi-constrained zeroing neural network for time-dependent nonlinear optimization with application to mobile robot tracking control. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.06.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
26
Du F, Lu JG. New Criteria on Finite-Time Stability of Fractional-Order Hopfield Neural Networks With Time Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:3858-3866. [PMID: 32822312 DOI: 10.1109/tnnls.2020.3016038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
27
Xiao J, Cao J, Cheng J, Wen S, Zhang R, Zhong S. Novel Inequalities to Global Mittag-Leffler Synchronization and Stability Analysis of Fractional-Order Quaternion-Valued Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:3700-3709. [PMID: 32997634 DOI: 10.1109/tnnls.2020.3015952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
28
Tao B, Xiao M, Zheng WX, Cao J, Tang J. Dynamics Analysis and Design for a Bidirectional Super-Ring-Shaped Neural Network With n Neurons and Multiple Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:2978-2992. [PMID: 32726281 DOI: 10.1109/tnnls.2020.3009166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
29
Finite Time Synchronization of Delayed Quaternion Valued Neural Networks with Fractional Order. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10551-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
30
Stamov T, Stamova I. Design of impulsive controllers and impulsive control strategy for the Mittag-Leffler stability behavior of fractional gene regulatory networks. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
31
The variant d-path Laplacian based consensus protocols for networked harmonic oscillators. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
32
Cao J, Stamov G, Stamova I, Simeonov S. Almost Periodicity in Impulsive Fractional-Order Reaction-Diffusion Neural Networks With Time-Varying Delays. IEEE TRANSACTIONS ON CYBERNETICS 2021;51:151-161. [PMID: 32071019 DOI: 10.1109/tcyb.2020.2967625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
33
Wan P, Sun D, Zhao M, Zhao H. Monostability and Multistability for Almost-Periodic Solutions of Fractional-Order Neural Networks With Unsaturating Piecewise Linear Activation Functions. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:5138-5152. [PMID: 32092015 DOI: 10.1109/tnnls.2020.2964030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
34
Xiao J, Zhong S, Wen S. Improved approach to the problem of the global Mittag-Leffler synchronization for fractional-order multidimension-valued BAM neural networks based on new inequalities. Neural Netw 2020;133:87-100. [PMID: 33152567 DOI: 10.1016/j.neunet.2020.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/13/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
35
Kyriakis P, Pequito S, Bogdan P. On the effects of memory and topology on the controllability of complex dynamical networks. Sci Rep 2020;10:17346. [PMID: 33060617 PMCID: PMC7562949 DOI: 10.1038/s41598-020-74269-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022]  Open
36
Chen J, Chen B, Zeng Z. Synchronization and Consensus in Networks of Linear Fractional-Order Multi-Agent Systems via Sampled-Data Control. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:2955-2964. [PMID: 31502992 DOI: 10.1109/tnnls.2019.2934648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
37
Robust speed prediction of high-speed trains based on improved echo state networks. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05096-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
38
Yang S, Hu C, Yu J, Jiang H. Exponential Stability of Fractional-Order Impulsive Control Systems With Applications in Synchronization. IEEE TRANSACTIONS ON CYBERNETICS 2020;50:3157-3168. [PMID: 30990206 DOI: 10.1109/tcyb.2019.2906497] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
39
Finite time anti-synchronization of complex-valued neural networks with bounded asynchronous time-varying delays. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
40
You X, Song Q, Zhao Z. Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays. Neural Netw 2020;123:248-260. [DOI: 10.1016/j.neunet.2019.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
41
Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay. Neural Netw 2020;122:382-394. [DOI: 10.1016/j.neunet.2019.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/06/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
42
Xiao J, Wen S, Yang X, Zhong S. New approach to global Mittag-Leffler synchronization problem of fractional-order quaternion-valued BAM neural networks based on a new inequality. Neural Netw 2020;122:320-337. [DOI: 10.1016/j.neunet.2019.10.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022]
43
Maiti R, Das Sharma K, Sarkar G. lBest-HS algorithm based concurrent L1 adaptive control for non-Linear systems. ISA TRANSACTIONS 2020;96:390-414. [PMID: 31320140 DOI: 10.1016/j.isatra.2019.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
44
Zheng B, Hu C, Yu J, Jiang H. Finite-time synchronization of fully complex-valued neural networks with fractional-order. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.09.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
45
Gunasekaran N, Zhai G. Stability analysis for uncertain switched delayed complex-valued neural networks. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
46
Xiao J, Zhong S. Synchronization and stability of delayed fractional-order memristive quaternion-valued neural networks with parameter uncertainties. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.06.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
47
Li HL, Hu C, Cao J, Jiang H, Alsaedi A. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw 2019;118:102-109. [DOI: 10.1016/j.neunet.2019.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
48
Delay-dependent stability analysis of the QUAD vector field fractional order quaternion-valued memristive uncertain neutral type leaky integrator echo state neural networks. Neural Netw 2019;117:307-327. [DOI: 10.1016/j.neunet.2019.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/22/2019] [Accepted: 05/20/2019] [Indexed: 11/17/2022]
49
Mani P, Rajan R, Shanmugam L, Hoon Joo Y. Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2019.04.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
50
Ding Z, Zeng Z, Zhang H, Wang L, Wang L. New results on passivity of fractional-order uncertain neural networks. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.03.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 3 123Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA