• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4697233)   Today's Articles (10803)
For: Jin L, Zhang Y. Discrete-Time Zhang Neural Network for Online Time-Varying Nonlinear Optimization With Application to Manipulator Motion Generation. IEEE Trans Neural Netw Learn Syst 2015;26:1525-1531. [PMID: 25122845 DOI: 10.1109/tnnls.2014.2342260] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Number Cited by Other Article(s)
1
Huang H, Zeng Z. An Accelerated Approach on Adaptive Gradient Neural Network for Solving Time-Dependent Linear Equations: A State-Triggered Perspective. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025;36:5070-5081. [PMID: 38483798 DOI: 10.1109/tnnls.2024.3371008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
2
Song F, Zhou Y, Xu C, Sun Z. A novel discrete zeroing neural network for online solving time-varying nonlinear optimization problems. Front Neurorobot 2024;18:1446508. [PMID: 39165272 PMCID: PMC11333311 DOI: 10.3389/fnbot.2024.1446508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024]  Open
3
Liao B, Han L, Cao X, Li S, Li J. Double integral‐enhanced Zeroing neural network with linear noise rejection for time‐varying matrix inverse. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2023. [DOI: 10.1049/cit2.12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]  Open
4
Yang M, Zhang Y, Tan N, Hu H. Explicit Linear Left-and-Right 5-Step Formulas With Zeroing Neural Network for Time-Varying Applications. IEEE TRANSACTIONS ON CYBERNETICS 2023;53:1133-1143. [PMID: 34464284 DOI: 10.1109/tcyb.2021.3104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
5
Vural NM, Ilhan F, Yilmaz SF, Ergut S, Kozat SS. Achieving Online Regression Performance of LSTMs With Simple RNNs. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:7632-7643. [PMID: 34138720 DOI: 10.1109/tnnls.2021.3086029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
6
A novel form-finding method via noise-tolerant neurodynamic model for symmetric tensegrity structure. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
7
Wang K, Liu T, Zhang Y, Tan N. Discrete-time future nonlinear neural optimization with equality constraint based on ten-instant ZTD formula. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
8
Wang G, Hao Z, Zhang B, Fang L, Mao D. A robust newton iterative algorithm for acoustic location based on solving linear matrix equations in the presence of various noises. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
9
Sun Z, Zhao L, Liu K, Jin L, Yu J, Li C. An advanced form-finding of tensegrity structures aided with noise-tolerant zeroing neural network. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06745-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
10
Luo G, Yang Z, Zhang Q. Identification of autonomous nonlinear dynamical system based on discrete-time multiscale wavelet neural network. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06142-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
11
Zhang Y, Ling Y, Yang M, Yang S, Zhang Z. Inverse-Free Discrete ZNN Models Solving for Future Matrix Pseudoinverse via Combination of Extrapolation and ZeaD Formulas. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:2663-2675. [PMID: 32745006 DOI: 10.1109/tnnls.2020.3007509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
12
Li J, Shi Y, Xuan H. Unified Model Solving Nine Types of Time-Varying Problems in the Frame of Zeroing Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:1896-1905. [PMID: 32484780 DOI: 10.1109/tnnls.2020.2995396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
13
A Vary-Parameter Convergence-Accelerated Recurrent Neural Network for Online Solving Dynamic Matrix Pseudoinverse and its Robot Application. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10440-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
14
Design, analysis and verification of recurrent neural dynamics for handling time-variant augmented Sylvester linear system. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
15
Shi T, Tian Y, Sun Z, Liu K, Jin L, Yu J. Noise-tolerant neural algorithm for online solving Yang-Baxter-type matrix equation in the presence of noises: A control-based method. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
16
Jin J. An Improved Finite Time Convergence Recurrent Neural Network with Application to Time-Varying Linear Complex Matrix Equation Solution. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10426-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
17
A better robustness and fast convergence zeroing neural network for solving dynamic nonlinear equations. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05617-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
18
Xiao L, Dai J, Lu R, Li S, Li J, Wang S. Design and Comprehensive Analysis of a Noise-Tolerant ZNN Model With Limited-Time Convergence for Time-Dependent Nonlinear Minimization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:5339-5348. [PMID: 32031952 DOI: 10.1109/tnnls.2020.2966294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
19
Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
20
Zhang J, Jin L, Cheng L. RNN for Perturbed Manipulability Optimization of Manipulators Based on a Distributed Scheme: A Game-Theoretic Perspective. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:5116-5126. [PMID: 32011266 DOI: 10.1109/tnnls.2020.2963998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
21
Xiao L, Jia L, Dai J, Tan Z. Design and Application of A Robust Zeroing Neural Network to Kinematical Resolution of Redundant Manipulators Under Various External Disturbances. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
22
Discrete-time nonlinear optimization via zeroing neural dynamics based on explicit linear multi-step methods for tracking control of robot manipulators. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.05.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
23
Prescribed-time convergent and noise-tolerant Z-type neural dynamics for calculating time-dependent quadratic programming. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05356-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
24
Tan Z, Li W, Xiao L, Hu Y. New Varying-Parameter ZNN Models With Finite-Time Convergence and Noise Suppression for Time-Varying Matrix Moore-Penrose Inversion. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:2980-2992. [PMID: 31536017 DOI: 10.1109/tnnls.2019.2934734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
25
Xiao X, Fu D, Wang G, Liao S, Qi Y, Huang H, Jin L. Two neural dynamics approaches for computing system of time-varying nonlinear equations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
26
Online singular value decomposition of time-varying matrix via zeroing neural dynamics. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.11.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
27
Chen D, Li S, Wu Q, Liao L. Simultaneous identification, tracking control and disturbance rejection of uncertain nonlinear dynamics systems: A unified neural approach. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
28
Gong W, Chen D, Li S. Active Sensing of Robot Arms Based on Zeroing Neural Networks: A Biological-Heuristic Optimization Model. IEEE ACCESS 2020;8:25976-25989. [DOI: 10.1109/access.2020.2971020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
29
Noise-suppressing zeroing neural network for online solving time-varying nonlinear optimization problem: a control-based approach. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04639-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
30
Jin J, Zhao L, Li M, Yu F, Xi Z. Improved zeroing neural networks for finite time solving nonlinear equations. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04622-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
31
Step-width theoretics and numerics of four-point general DTZN model for future minimization using Jury stability criterion. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.04.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
32
Zhang Y, Qi Z, Qiu B, Yang M, Xiao M. Zeroing Neural Dynamics and Models for Various Time-Varying Problems Solving with ZLSF Models as Minimization-Type and Euler-Type Special Cases [Research Frontier]. IEEE COMPUT INTELL M 2019. [DOI: 10.1109/mci.2019.2919397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
33
Li J, Zhang Y, Mao M. Five-instant type discrete-time ZND solving discrete time-varying linear system, division and quadratic programming. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.11.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
34
Qiu B, Zhang Y, Yang Z. New Discrete-Time ZNN Models for Least-Squares Solution of Dynamic Linear Equation System With Time-Varying Rank-Deficient Coefficient. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;29:5767-5776. [PMID: 29993872 DOI: 10.1109/tnnls.2018.2805810] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
35
A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.07.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
36
Chen D, Zhang Y. Robust Zeroing Neural-Dynamics and Its Time-Varying Disturbances Suppression Model Applied to Mobile Robot Manipulators. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;29:4385-4397. [PMID: 29990177 DOI: 10.1109/tnnls.2017.2764529] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
37
Guo D, Yan L, Nie Z. Design, Analysis, and Representation of Novel Five-Step DTZD Algorithm for Time-Varying Nonlinear Optimization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;29:4248-4260. [PMID: 29990090 DOI: 10.1109/tnnls.2017.2761443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
38
Xiao L, Liao B, Li S, Chen K. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Netw 2018;98:102-113. [DOI: 10.1016/j.neunet.2017.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/25/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
39
Shi Y, Zhang Y. Discrete time-variant nonlinear optimization and system solving via integral-type error function and twice ZND formula with noises suppressed. Soft comput 2018. [DOI: 10.1007/s00500-018-3020-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
40
Liao B, Xiang Q. Robustness Analyses and Optimal Sampling Gap of Recurrent Neural Network for Dynamic Matrix Pseudoinversion. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2017. [DOI: 10.20965/jaciii.2017.p0778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
41
Jin L, Zhang Y, Li S. Integration-Enhanced Zhang Neural Network for Real-Time-Varying Matrix Inversion in the Presence of Various Kinds of Noises. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016;27:2615-2627. [PMID: 26625426 DOI: 10.1109/tnnls.2015.2497715] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA