1
|
Chang W, Wu L, Zhu S, Sang H, Guo L. Improved switching condition for reachable set estimation of discrete-time switched delayed neural networks. Neural Netw 2024; 179:106530. [PMID: 39047337 DOI: 10.1016/j.neunet.2024.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/28/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
This research delves into the reachable set estimation (RSE) problem for general switched delayed neural networks (SDNNs) in the discrete-time context. Note that existing relevant research on SDNNs predominantly relies on either time-dependent or state-dependent switching approaches. The time-dependent versions necessitate the stability of each subnetwork beforehand, whereas the state-dependent switching strategies solely depend on the current state, thus disregarding the historical information of the neuron states. For fully harnessing the historical information pertaining to neuron states, a delicate combined switching strategy (CSS) is formulated with the explicit goal of furnishing a relaxed and less conservative design framework tailored for discrete-time SDNNs, where all subnetworks can also be unstable. By resorting to the established time-dependent multiple Lyapunov-Krasovskii functional (TDMLF) technique, the improved criteria are subsequently presented, ensuring that the reachable set encompassing all potential states of SDNNs is confined to an anticipated bounded set. Ultimately, the practicality and superiority of the presented RSE approach are thoroughly validated by two illustrative simulation examples.
Collapse
Affiliation(s)
- Wenting Chang
- School of Sciences, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China.
| | - Libing Wu
- School of Sciences, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China.
| | - Shuaibing Zhu
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China.
| | - Hong Sang
- College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Liangdong Guo
- School of Sciences, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China.
| |
Collapse
|
2
|
Kang Y, Luo D, Xin B, Cheng J, Yang T, Zhou S. Robust Leaderless Time-Varying Formation Control for Nonlinear Unmanned Aerial Vehicle Swarm System With Communication Delays. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:5692-5705. [PMID: 35580098 DOI: 10.1109/tcyb.2022.3165007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article investigates the tracking-oriented robust leaderless time-varying formation (TVF) control problem for unmanned aerial vehicle swarm systems (UAVSSs) with Lipschitz nonlinear dynamics under directed topology, where external disturbances are random and bounded, and communication delays (CDs) are bounded. In this article, a state-feedback control approach is adopted to make sure that a UAVSS forms a desired TVF and follows a specified trajectory when CDs and external disturbances occur. First, a novel PD-like formation control protocol with several unknown parameters and CDs is designed. The protocol contains the information of the local neighborhood status and its differential quantities. Second, the tracking-oriented robust leaderless TVF control problem with Lipschitz dynamics, external disturbances, and CDs is transformed into a problem about asymptotic stability of a lower dimensional closed-loop control system through a special matrix decomposition. Third, a theorem is proposed to determine the unknown parameters of the control protocol and the upper bound of CDs. In the theorem, sufficient conditions for a UAVSS to attain the anticipated TVF and trajectory tracking are obtained. A Lyapunov-Krasovskii (LK) functional is constructed to verify that the error among the practical flight state of UAVs, the anticipant TVF configuration, and tracking trajectory can asymptotically converge to 0. Finally, with the presentation of a simulation case, the effectiveness of the theoretical results is illustrated.
Collapse
|
3
|
Wang JL, Du XY, Liu CG. Synchronization and adaptive control for coupled fractional-order reaction-diffusion neural networks with multiple couplings. ISA TRANSACTIONS 2023; 136:93-103. [PMID: 36437172 DOI: 10.1016/j.isatra.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 05/16/2023]
Abstract
In this paper, two kinds of coupled fractional-order reaction-diffusion neural networks (CFORDNNs) with multiple state couplings or spatial diffusion couplings are proposed. By resorting to the Laplace transform and the properties of Mittag-Leffler functions, sufficient synchronization conditions are derived for the concerned network models. In addition, to guarantee the synchronization of these two networks, several appropriate adaptive control schemes are also developed. Ultimately, the validity of the devised adaptive strategies are verified by adopting some numerical examples with simulation results.
Collapse
Affiliation(s)
- Jin-Liang Wang
- Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems, School of Computer Science and Technology, Tiangong University, Tianjin 300387, China
| | - Xin-Yu Du
- School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
| | - Chen-Guang Liu
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China.
| |
Collapse
|
4
|
Wan L, Liu Z. Multiple exponential stability and instability for state-dependent switched neural networks with time-varying delays and piecewise-linear radial basis activation functions. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Manivannan R, Cao Y, Chong KT. Unified dissipativity state estimation for delayed generalized impulsive neural networks with leakage delay effects. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Sang H, Nie H, Zhao J. Event-triggered asynchronous synchronization control for switched generalized neural networks with time-varying delay. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Sang H, Nie H, Zhao J. Dissipativity-Based Synchronization for Switched Discrete-Time-Delayed Neural Networks With Combined Switching Paradigm. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:7995-8005. [PMID: 33600335 DOI: 10.1109/tcyb.2021.3052160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study concerns the dissipativity-based synchronization problem for the discrete-time switched neural networks with time-varying delay. Different from some existing research depending on the arbitrary and time-dependent switching mechanisms, all subsystems of the investigated delayed neural networks are permitted to be nondissipative. For reducing the switching frequency, the combined switching paradigm constituted by the time-dependent and state-dependent switching strategies is then constructed. In light of the proposed dwell-time-dependent storage functional, sufficient conditions with less conservativeness are formulated, under which the resultant synchronization error system is strictly (~X,~Y,~Z) - ϑ -dissipative on the basis of the combined switching mechanism or the joint action of the switching mechanism and time-varying control input. Finally, the applicability and superiority of the theoretical results are adequately substantiated with the synchronization issue of two discrete-time switched Hopfield neural networks with time-varying delay, and the relationship among the performance index, time delay, and minimum dwell time is also revealed.
Collapse
|
8
|
Padmaja N, Balasubramaniam P. Results on passivity and design of passive controller for fuzzy neural networks with additive time-varying delays. Soft comput 2022. [DOI: 10.1007/s00500-022-07353-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Li Z, Yue D, Ma Y, Zhao J. Neural-Networks-Based Prescribed Tracking for Nonaffine Switched Nonlinear Time-Delay Systems. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:6579-6590. [PMID: 33417582 DOI: 10.1109/tcyb.2020.3042232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, by using the neural-networks (NNs) separation and approximation technique, an adaptive scheme is presented to deliver the prescribed tracking performance for a class of unknown nonaffine switched nonlinear time-delay systems. The nonaffine terms are indifferentiable and the controllability condition is not required for each subsystem, which allows the considered tracking problem to not be efficiently solved by the traditional adaptive control algorithms. To solve the problem, NNs are utilized to separate and approximate the nonaffine functions, and then the dynamic surface control and convex combination method are utilized to construct a controller and a switching strategy. In addition, an adaptive law is considered for each subsystem to reduce the conservativeness. Under the designed controller and switching strategy, all the signals of the resulting closed-loop system are bounded, and the tracking performance is achieved with a prescribed level.
Collapse
|
10
|
Gunasekaran N, Ali MS, Arik S, Ghaffar HA, Diab AAZ. Finite-time and sampled-data synchronization of complex dynamical networks subject to average dwell-time switching signal. Neural Netw 2022; 149:137-145. [DOI: 10.1016/j.neunet.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
|
11
|
|
12
|
Sang H, Zhao J. Finite-Time H ∞ Estimator Design for Switched Discrete-Time Delayed Neural Networks With Event-Triggered Strategy. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:1713-1725. [PMID: 32479410 DOI: 10.1109/tcyb.2020.2992518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article is concerned with the event-triggered finite-time H∞ estimator design for a class of discrete-time switched neural networks (SNNs) with mixed time delays and packet dropouts. To further reduce the data transmission, both the measured information of system outputs and switching signal of the SNNs are only allowed to be accessible for the constructed estimator at the certain triggering time instants. Under this consideration, the simultaneous presence of the switching and triggering actions also leads to the asynchronism between the indices of the SNNs and the designed estimator. Unlike the existing event-triggered strategies for the general switched linear systems, the proposed event-triggered mechanism not only allows the occurrence of multiple switches in one triggering interval but also removes the minimum dwell-time constraint on the switched signal. In light of the piecewise Lyapunov-Krasovskii functional theory, sufficient conditions are developed for the estimation error system to be stochastically finite-time bounded with a finite-time specified H∞ performance. Finally, the effectiveness and applicability of the theoretical results are verified by a switched Hopfield neural network.
Collapse
|
13
|
Yang D, Li X. Robust stability analysis of stochastic switched neural networks with parameter uncertainties via state-dependent switching law. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2019.11.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
New delay and order-dependent passivity criteria for impulsive fractional-order neural networks with switching parameters and proportional delays. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.04.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Rao R, Huang J, Li X. Stability analysis of nontrivial stationary solution and constant equilibrium point of reaction–diffusion neural networks with time delays under Dirichlet zero boundary value. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.02.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Zhang J, Zhu S, Lu N, Wen S. Multistability of state-dependent switching neural networks with discontinuous nonmonotonic piecewise linear activation functions. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Multi-periodicity of switched neural networks with time delays and periodic external inputs under stochastic disturbances. Neural Netw 2021; 141:107-119. [PMID: 33887601 DOI: 10.1016/j.neunet.2021.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
This paper presents new theoretical results on the multi-periodicity of recurrent neural networks with time delays evoked by periodic inputs under stochastic disturbances and state-dependent switching. Based on the geometric properties of activation function and switching threshold, the neuronal state space is partitioned into 5n regions in which 3n ones are shown to be positively invariant with probability one. Furthermore, by using Itô's formula, Lyapunov functional method, and the contraction mapping theorem, two criteria are proposed to ascertain the existence and mean-square exponential stability of a periodic orbit in every positive invariant set. As a result, the number of mean-square exponentially stable periodic orbits increases to 3n from 2n in a neural network without switching. Two illustrative examples are elaborated to substantiate the efficacy and characteristics of the theoretical results.
Collapse
|
18
|
Sang H, Zhao J. Sampled-Data-Based H ∞ Synchronization of Switched Coupled Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:1968-1980. [PMID: 31021781 DOI: 10.1109/tcyb.2019.2908187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper investigates the sampled-data-based H∞ synchronization problem for a class of switched coupled neural networks subject to exogenous perturbations. Different from the existing results on the nonswitched and continuous-time control cases, the unmatched phenomena between the switching of the system models and that of the controllers will occur, when the resulting error system switches within a sampling interval. In the framework of time-dependent switching mechanism, sufficient conditions for the existence of the sampled-data controllers are derived under the variable sampling and asynchronous switching. We prove that the proposed method not only renders the synchronization error system exponentially stable but also constrains the influence of the exogenous perturbations on the synchronization performance at a specified level. Finally, a switched coupled cellular neural network and a switched coupled Hopfield neural network are provided to illustrate the applicability and validity of the developed results.
Collapse
|
19
|
Sang H, Zhao J. Energy-to-Peak State Estimation for Switched Neutral-Type Neural Networks With Sector Condition via Sampled-Data Information. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:1339-1350. [PMID: 32310793 DOI: 10.1109/tnnls.2020.2984629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, the energy-to-peak state estimation problem is investigated for a class of switched neutral neural networks subject to the external perturbations with bounded energy. Both the values of the measurement outputs and switching signal of the subsystems are only available for the controllers at the discrete sampling instants. Unlike the results for nonswitched neural networks, the coexistence of the switching and sampling actions directly causes the asynchronous phenomena between the indexes of subsystems and their corresponding controllers. To address this situation, the piecewise time-dependent Lyapunov-Krasovskii functional and slow switching mechanism are introduced. Under the developed theorem conditions, we prove that the designed state estimator exponentially tracks the true value of the neural state with the accessible sampled-data information. Also, the influence of the exogenous perturbations on the peak value of the estimation error is constrained at a prescribed level. Finally, a neutral cellular neural network with switching parameters is employed to substantiate the effectiveness and applicability of the theoretical results.
Collapse
|
20
|
Gunasekaran N, Zhai G, Yu Q. Sampled-data synchronization of delayed multi-agent networks and its application to coupled circuit. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.05.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Yang D, Li X, Song S. Design of State-Dependent Switching Laws for Stability of Switched Stochastic Neural Networks With Time-Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:1808-1819. [PMID: 31380768 DOI: 10.1109/tnnls.2019.2927161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the stability properties of switched stochastic neural networks (SSNNs) with time-varying delays whose subsystem is not necessarily stable. We introduce state-dependent switching (SDS) as a tool for stability analysis. Some SDS laws for asymptotic stability and p th moment exponentially stable are designed by employing Lyapunov-Krasovskii (L-K) functional and Lyapunov-Razumikhin (L-R) method, respectively. It is shown that the stability of SSNNs with time-varying delays composed of unstable subsystems can be achieved by using SDS law. The control gains in the designed SDS laws can be derived by solving the LMIs in derived stability criteria. Two numerical examples are provided to demonstrate the effectiveness of the proposed SDS laws.
Collapse
|
22
|
Group consensus control for discrete-time heterogeneous multi-agent systems with time delays. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Chen G, Sun J, Xia J. Estimation of Domain of Attraction for Aperiodic Sampled-Data Switched Delayed Neural Networks Subject to Actuator Saturation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:1489-1503. [PMID: 31295123 DOI: 10.1109/tnnls.2019.2920665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, for the case of the asynchronous switching caused by that subsystem's switching occuring during a sampling interval, the domain of attraction estimation problem is investigated for aperiodic sampled-data switched delayed neural networks (ASDSDNNs) subject to actuator saturation. A parameters-dependent time-scheduled Lyapunov functional consisting of a novel looped-functional is constructed using segmentation technology and linear interpolation. By employing this novel functional and using an average dwell time (ADT) approach, exponential stability criteria are proposed for polytopic uncertain ASDSDNNs subject to actuator saturation. And a relationship between ADT and sampling period is revealed for ASDSDNNs. As a corollary, exponential stability criteria are proposed for nominal ASDSDNNs subject to actuator saturation. Furthermore, by describing the domain of attraction as a time-varying ellipsoid determined by the time-scheduled Lyapunov matrix, the proposed theoretical conditions are transformed into a linear matrix inequality (LMI)-based multi-objective optimization problem. The dynamic estimates of the domain of attraction for ASDSDNNs are solved. Numerical simulation examples are provided to illustrate the effectiveness of the proposed method.
Collapse
|
24
|
Cheng J, Park JH, Cao J, Qi W. Hidden Markov Model-Based Nonfragile State Estimation of Switched Neural Network With Probabilistic Quantized Outputs. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:1900-1909. [PMID: 30998489 DOI: 10.1109/tcyb.2019.2909748] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper focuses on the state estimator design problem for a switched neural network (SNN) with probabilistic quantized outputs, where the switching process is governed by a sojourn probability. It is assumed that both packet dropouts and signal quantization exist in communication channels. Asynchronous estimator and quantification function are described by two different hidden Markov model between the SNNs and its estimator. To deal with the small uncertain of estimators in a random way, a probabilistic nonfragile state estimator is introduced, where uncertain information is described by the interval type of gain variation. A sufficient condition on mean square stable of the estimation error system is obtained and then the desired estimator is designed. Finally, a simulation result is provided to verify the effectiveness of the proposed design method.
Collapse
|
25
|
Wang S, Yu H, Yu J, Na J, Ren X. Neural-Network-Based Adaptive Funnel Control for Servo Mechanisms With Unknown Dead-Zone. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:1383-1394. [PMID: 30387759 DOI: 10.1109/tcyb.2018.2875134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper proposes an adaptive funnel control (FC) scheme for servo mechanisms with an unknown dead-zone. To improve the transient and steady-state performance, a modified funnel variable, which relaxes the limitation of the original FC (e.g., systems with relative degree 1 or 2), is developed using the tracking error to replace the scaling factor. Then, by applying the error transformation method, the original error is transformed into a new error variable which is used in the controller design. By using an improved funnel function in a dynamic surface control procedure, an adaptive funnel controller is proposed to guarantee that the output error remains within a predefined funnel boundary. A novel command filter technique is introduced by using the Levant differentiator to eliminate the "explosion of complexity" problem in the conventional backstepping procedure. Neural networks are used to approximate the unknown dead-zone and unknown nonlinear functions. Comparative experiments on a turntable servo mechanism confirm the effectiveness of the devised control method.
Collapse
|
26
|
Guo Z, Ou S, Wang J. Multistability of switched neural networks with sigmoidal activation functions under state-dependent switching. Neural Netw 2020; 122:239-252. [DOI: 10.1016/j.neunet.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 11/12/2022]
|
27
|
Gunasekaran N, Zhai G. Stability analysis for uncertain switched delayed complex-valued neural networks. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Zhu L, Qiu J, Karimi HR. Region Stabilization of Switched Neural Networks With Multiple Modes and Multiple Equilibria: A Pole Assignment Method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 31:3280-3293. [PMID: 31647448 DOI: 10.1109/tnnls.2019.2940466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates region stabilization issue of switched neural networks (SNNs) with multiple modes (MMs) and multiple equilibria (ME) via a pole assignment method. In such an SNN, every neuron is observed with more than one mode and unstable equilibrium point. First, SNNs with MMs and ME are modeled in terms of switched systems with unstable subsystems and ME. Second, a necessary and sufficient condition and a sufficient condition are, respectively, proposed for arbitrary switching paths pole assignment and arbitrary periodic/quasi-periodic switching paths (PSPs/QSPs) asymptotically region stabilizing pole assignment of switched linear time-invariant (LTI) systems with ME. It is shown that to stabilize a switched LTI system, some/all poles of all/some linear subsystems can be assigned to suitable locations of the right-half side of the complex plane. Third, based on the obtained pole assignment results, an asymptotical-region-stabilizing-control law observed as distributed state feedback controllers of MMs, asymptotical-region-stabilizing PSPs/QSPs, and a corresponding algorithm are all designed for asymptotical region stabilization of switched linear/nonlinear neural networks with MMs and ME. Finally, a numeral example is given to illustrate the effectiveness and practicality of the new results.
Collapse
|
29
|
|
30
|
Guo Z, Liu L, Wang J. Multistability of Switched Neural Networks With Piecewise Linear Activation Functions Under State-Dependent Switching. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2052-2066. [PMID: 30418927 DOI: 10.1109/tnnls.2018.2876711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper is concerned with the multistability of switched neural networks with piecewise linear activation functions under state-dependent switching. Under some reasonable assumptions on the switching threshold and activation functions, by using the state-space decomposition method, contraction mapping theorem, and strictly diagonally dominant matrix theory, we can characterize the number of equilibria as well as analyze the stability/instability of the equilibria. More interesting, we can find that the switching threshold plays an important role for stable equilibria in the unsaturation regions of activation functions, and the number of stable equilibria of an n -neuron switched neural network with state-dependent parameters increases to 3n from 2n in the conventional one. Furthermore, for two-neuron switched neural networks, the precise attraction basin of each stable equilibrium point can be figured out, and its boundary is composed of the stable manifolds of unstable equilibrium points and the switching lines. Two simulation examples are discussed in detail to substantiate the effectiveness of the theoretical analysis.
Collapse
|
31
|
Zhang XM, Han QL, Ge X. An overview of neuronal state estimation of neural networks with time-varying delays. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Saravanakumar R, Stojanovic SB, Radosavljevic DD, Ahn CK, Karimi HR. Finite-Time Passivity-Based Stability Criteria for Delayed Discrete-Time Neural Networks via New Weighted Summation Inequalities. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:58-71. [PMID: 29994321 DOI: 10.1109/tnnls.2018.2829149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we study the problem of finite-time stability and passivity criteria for discrete-time neural networks (DNNs) with variable delays. The main objective is how to effectively evaluate the finite-time passivity conditions for NNs. To achieve this, some new weighted summation inequalities are proposed for application to a finite-sum term appearing in the forward difference of a novel Lyapunov-Krasovskii functional, which helps to ensure that the considered delayed DNN is passive. The derived passivity criteria are presented in terms of linear matrix inequalities. A numerical example is given to illustrate the effectiveness of the proposed results.
Collapse
|
33
|
Zhang XM, Han QL, Ge X, Ding D. An overview of recent developments in Lyapunov–Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.038] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Tang HA, Duan S, Hu X, Wang L. Passivity and synchronization of coupled reaction–diffusion neural networks with multiple time-varying delays via impulsive control. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Zhang XM, Han QL, Wang J. Admissible Delay Upper Bounds for Global Asymptotic Stability of Neural Networks With Time-Varying Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:5319-5329. [PMID: 29994787 DOI: 10.1109/tnnls.2018.2797279] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper is concerned with global asymptotic stability of a neural network with a time-varying delay, where the delay function is differentiable uniformly bounded with delay-derivative bounded from above. First, a general reciprocally convex inequality is presented by introducing some slack vectors with flexible dimensions. This inequality provides a tighter bound in the form of a convex combination than some existing ones. Second, by constructing proper Lyapunov-Krasovskii functional, global asymptotic stability of the neural network is analyzed for two types of the time-varying delays depending on whether or not the lower bound of the delay derivative is known. Third, noticing that sufficient conditions on stability from estimation on the derivative of some Lyapunov-Krasovskii functional are affine both on the delay function and its derivative, allowable delay sets can be refined to produce less conservative stability criteria for the neural network under study. Finally, two numerical examples are given to substantiate the effectiveness of the proposed method.
Collapse
|
36
|
Jiang W, Peng Z, Rahmani A, Hu W, Wen G. Distributed consensus of linear MASs with an unknown leader via a predictive extended state observer considering input delay and disturbances. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Chen W, Huang Y, Ren S. Passivity of coupled memristive delayed neural networks with fixed and adaptive coupling weights. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Han J, Zhang H, Wang Y, Sun X. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input. IEEE TRANSACTIONS ON CYBERNETICS 2018; 48:3056-3066. [PMID: 28981437 DOI: 10.1109/tcyb.2017.2755864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted performance level is considered to ensure the robustness. In addition, the weighted performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.
Collapse
|
39
|
Xi J, Yang J, Liu H, Zheng T. Adaptive guaranteed-performance consensus design for high-order multiagent systems. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2018.07.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Guo D, Xu F, Yan L, Nie Z, Shao H. A New Noise-Tolerant Obstacle Avoidance Scheme for Motion Planning of Redundant Robot Manipulators. Front Neurorobot 2018; 12:51. [PMID: 30210328 PMCID: PMC6124349 DOI: 10.3389/fnbot.2018.00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/07/2018] [Indexed: 11/13/2022] Open
Abstract
Avoiding obstacle(s) is a challenging issue in the research of redundant robot manipulators. In addition, noise from truncation, rounding, and model uncertainty is an important factor that affects greatly the obstacle avoidance scheme. In this paper, based on the neural dynamics design formula, a new scheme with the pseudoinverse-type formulation is proposed for obstacle avoidance of redundant robot manipulators in a noisy environment. Such a scheme has the capability of suppressing constant and bounded time-varying noises, and it is thus termed as the noise-tolerant obstacle avoidance (NTOA) scheme in this paper. Theoretical results are also given to show the excellent property of the proposed NTOA scheme (particularly in noise situation). Based on a PA10 robot manipulator with point and window-shaped obstacles, computer simulation results are presented to further substantiate the efficacy and superiority of the proposed NTOA scheme for motion planning of redundant robot manipulators.
Collapse
Affiliation(s)
- Dongsheng Guo
- College of Information Science and Engineering, Huaqiao University, Xiamen, China
| | - Feng Xu
- College of Information Science and Engineering, Huaqiao University, Xiamen, China
| | - Laicheng Yan
- College of Information Science and Engineering, Huaqiao University, Xiamen, China
| | - Zhuoyun Nie
- College of Information Science and Engineering, Huaqiao University, Xiamen, China
| | - Hui Shao
- College of Information Science and Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
41
|
Xue M, Tang Y, Wu L, Qian F. Model Approximation for Switched Genetic Regulatory Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:3404-3417. [PMID: 28792906 DOI: 10.1109/tnnls.2017.2721448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The model approximation problem is studied in this paper for switched genetic regulatory networks (GRNs) with time-varying delays. We focus on constructing a reduced-order model to approximate the high-order GRNs considered under the switching signal subject to certain constraints, such that the approximation error system between the original and reduced-order systems is exponentially stable with a disturbance attenuation performance. The stability conditions and the disturbance attenuation performance are established by utilizing two integral inequality bounding techniques and the average dwell-time method for the approximation error system. Then, the solvability conditions for the reduced-order models for the GRNs are also established using the projection method. Furthermore, the model approximation problem can be transferred into a sequential minimization problem that is subject to linear matrix inequality constraints by using the cone complementarity algorithm. Finally, several examples are provided to illustrate the effectiveness and the advantages of the proposed methods.
Collapse
|
42
|
|
43
|
Zhang XM, Han QL, Zeng Z. Hierarchical Type Stability Criteria for Delayed Neural Networks via Canonical Bessel-Legendre Inequalities. IEEE TRANSACTIONS ON CYBERNETICS 2018; 48:1660-1671. [PMID: 29621005 DOI: 10.1109/tcyb.2017.2776283] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper is concerned with global asymptotic stability of delayed neural networks. Notice that a Bessel-Legendre inequality plays a key role in deriving less conservative stability criteria for delayed neural networks. However, this inequality is in the form of Legendre polynomials and the integral interval is fixed on . As a result, the application scope of the Bessel-Legendre inequality is limited. This paper aims to develop the Bessel-Legendre inequality method so that less conservative stability criteria are expected. First, by introducing a canonical orthogonal polynomial sequel, a canonical Bessel-Legendre inequality and its affine version are established, which are not explicitly in the form of Legendre polynomials. Moreover, the integral interval is shifted to a general one . Second, by introducing a proper augmented Lyapunov-Krasovskii functional, which is tailored for the canonical Bessel-Legendre inequality, some sufficient conditions on global asymptotic stability are formulated for neural networks with constant delays and neural networks with time-varying delays, respectively. These conditions are proven to have a hierarchical feature: the higher level of hierarchy, the less conservatism of the stability criterion. Finally, three numerical examples are given to illustrate the efficiency of the proposed stability criteria.
Collapse
|
44
|
Yu J, Chen B, Yu H, Lin C, Zhao L. Neural networks-based command filtering control of nonlinear systems with uncertain disturbance. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2017.10.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Li C, Lian J, Wang Y. Stability of switched memristive neural networks with impulse and stochastic disturbance. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Consensus of multi-agent systems with time delay based on periodic sample and event hybrid control. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.12.106] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Sheng Y, Zhang H, Zeng Z. Synchronization of Reaction-Diffusion Neural Networks With Dirichlet Boundary Conditions and Infinite Delays. IEEE TRANSACTIONS ON CYBERNETICS 2017; 47:3005-3017. [PMID: 28436913 DOI: 10.1109/tcyb.2017.2691733] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper is concerned with synchronization for a class of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite discrete time-varying delays. By utilizing theories of partial differential equations, Green's formula, inequality techniques, and the concept of comparison, algebraic criteria are presented to guarantee master-slave synchronization of the underlying reaction-diffusion neural networks via a designed controller. Additionally, sufficient conditions on exponential synchronization of reaction-diffusion neural networks with finite time-varying delays are established. The proposed criteria herein enhance and generalize some published ones. Three numerical examples are presented to substantiate the validity and merits of the obtained theoretical results.
Collapse
|
48
|
Wang J, Zhang H, Wang Z, Gao DW. Finite-Time Synchronization of Coupled Hierarchical Hybrid Neural Networks With Time-Varying Delays. IEEE TRANSACTIONS ON CYBERNETICS 2017; 47:2995-3004. [PMID: 28422675 DOI: 10.1109/tcyb.2017.2688395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper is concerned with the finite-time synchronization problem of coupled hierarchical hybrid delayed neural networks. This coupled hierarchical hybrid neural networks consist of a higher level switching and a lower level Markovian jumping. The time-varying delays are dependent on not only switching signal but also jumping mode. By using a less conservative weighted integral inequality and stochastic multiple Lyapunov-Krasovskii functional, new finite-time synchronization criteria are obtained, which makes the state trajectories be kept within the prescribed bound in a time interval. Finally, an example is proposed to demonstrate the effectiveness of the obtained results.
Collapse
|
49
|
Zhang XM, Han QL, Wang Z, Zhang BL. Neuronal State Estimation for Neural Networks With Two Additive Time-Varying Delay Components. IEEE TRANSACTIONS ON CYBERNETICS 2017; 47:3184-3194. [PMID: 28422702 DOI: 10.1109/tcyb.2017.2690676] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper is concerned with the state estimation for neural networks with two additive time-varying delay components. Three cases of these two time-varying delays are fully considered: 1) both delays are differentiable uniformly bounded with delay-derivative bounded by some constants; 2) one delay is continuous uniformly bounded while the other is differentiable uniformly bounded with delay-derivative bounded by certain constants; and 3) both delays are continuous uniformly bounded. First, an extended reciprocally convex inequality is introduced to bound reciprocally convex combinations appearing in the derivative of some Lyapunov-Krasovskii functional. Second, sufficient conditions are derived based on the extended inequality for three cases of time-varying delays, respectively. Third, a linear-matrix-inequality-based approach with two tuning parameters is proposed to design desired Luenberger estimators such that the error system is globally asymptotically stable. This approach is then applied to state estimation on neural networks with a single interval time-varying delay. Finally, two numerical examples are given to illustrate the effectiveness of the proposed method.
Collapse
|
50
|
New Results on Reachable Sets Bounding for Switched Neural Networks Systems with Discrete, Distributed Delays and Bounded Disturbances. Neural Process Lett 2017. [DOI: 10.1007/s11063-017-9596-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|