1
|
Jastrzebska A. Time series classification through visual pattern recognition. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2022. [DOI: 10.1016/j.jksuci.2019.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Jing P, Li Y, Li X, Wu Y, Su Y. Joint nuclear- and ℓ2,1-norm regularized heterogeneous tensor decomposition for robust classification. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.08.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Zhou P, Lu C, Feng J, Lin Z, Yan S. Tensor Low-Rank Representation for Data Recovery and Clustering. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021; 43:1718-1732. [PMID: 31751228 DOI: 10.1109/tpami.2019.2954874] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multi-way or tensor data analysis has attracted increasing attention recently, with many important applications in practice. This article develops a tensor low-rank representation (TLRR) method, which is the first approach that can exactly recover the clean data of intrinsic low-rank structure and accurately cluster them as well, with provable performance guarantees. In particular, for tensor data with arbitrary sparse corruptions, TLRR can exactly recover the clean data under mild conditions; meanwhile TLRR can exactly verify their true origin tensor subspaces and hence cluster them accurately. TLRR objective function can be optimized via efficient convex programing with convergence guarantees. Besides, we provide two simple yet effective dictionary construction methods, the simple TLRR (S-TLRR) and robust TLRR (R-TLRR), to handle slightly and severely corrupted data respectively. Experimental results on two computer vision data analysis tasks, image/video recovery and face clustering, clearly demonstrate the superior performance, efficiency and robustness of our developed method over state-of-the-arts including the popular LRR and SSC methods.
Collapse
|
4
|
Wu M, Wang S, Li Z, Zhang L, Wang L, Ren Z. Joint latent low-rank and non-negative induced sparse representation for face recognition. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02338-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Low-rank discriminative regression learning for image classification. Neural Netw 2020; 125:245-257. [PMID: 32146355 DOI: 10.1016/j.neunet.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 01/14/2020] [Accepted: 02/13/2020] [Indexed: 11/21/2022]
Abstract
As a famous multivariable analysis technique, regression methods, such as ridge regression, are widely used for image representation and dimensionality reduction. However, the metric of ridge regression and its variants is always the Frobenius norm (F-norm), which is sensitive to outliers and noise in data. At the same time, the performance of the ridge regression and its extensions is limited by the class number of the data. To address these problems, we propose a novel regression learning method which named low-rank discriminative regression learning (LDRL) for image representation. LDRL assumes that the input data is corrupted and thus the L1 norm can be used as a sparse constraint on the noised matrix to recover the clean data for regression, which can improve the robustness of the algorithm. Due to learn a novel project matrix that is not limited by the number of classes, LDRL is suitable for classifying the data set no matter whether there is a small or large number of classes. The performance of the proposed LDRL is evaluated on six public image databases. The experimental results prove that LDRL obtains better performance than existing regression methods.
Collapse
|
6
|
Zhong G, Pun CM. Subspace clustering by simultaneously feature selection and similarity learning. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.105512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Lai Z, Bao J, Kong H, Wan M, Yang G. Discriminative low-rank projection for robust subspace learning. INT J MACH LEARN CYB 2020. [DOI: 10.1007/s13042-020-01113-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Wang H, Zhao Z, Tang Y. An effective few-shot learning approach via location-dependent partial differential equation. Knowl Inf Syst 2019. [DOI: 10.1007/s10115-019-01400-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Ren Z, Sun Q, Wu B, Zhang X, Yan W. Learning Latent Low-Rank and Sparse Embedding for Robust Image Feature Extraction. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 29:2094-2107. [PMID: 31502975 DOI: 10.1109/tip.2019.2938859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To defy the curse of dimensionality, the inputs are always projected from the original high-dimensional space into the target low-dimension space for feature extraction. However, due to the existence of noise and outliers, the feature extraction task for corrupted data is still a challenging problem. Recently, a robust method called low rank embedding (LRE) was proposed. Despite the success of LRE in experimental studies, it also has many disadvantages: 1) The learned projection cannot quantitatively interpret the importance of features. 2) LRE does not perform data reconstruction so that the features may not be capable of holding the main energy of the original "clean" data. 3) LRE explicitly transforms error into the target space. 4) LRE is an unsupervised method, which is only suitable for unsupervised scenarios. To address these problems, in this paper, we propose a novel method to exploit the latent discriminative features. In particular, we first utilize an orthogonal matrix to hold the main energy of the original data. Next, we introduce an l2,1 -norm term to encourage the features to be more compact, discriminative and interpretable. Then, we enforce a columnwise l2,1 -norm constraint on an error component to resist noise. Finally, we integrate a classification loss term into the objective function to fit supervised scenarios. Our method performs better than several state-of-the-art methods in terms of effectiveness and robustness, as demonstrated on six publicly available datasets.
Collapse
|
10
|
Zhang H, Qian J, Gao J, Yang J, Xu C. Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2825-2839. [PMID: 30668503 DOI: 10.1109/tnnls.2018.2885699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the l0 -norm and rank function minimization problems. However, due to the absence of convexity in these nonconvex problems, developing efficient algorithms with convergence guarantee becomes very challenging. Inspired by the basic ideas of both the Jacobian alternating direction method of multipliers (JADMMs) for solving linearly constrained problems with separable objectives and the proximal gradient methods (PGMs) for optimizing the unconstrained problems with one variable, this paper focuses on extending the PGMs to the proximal Jacobian iteration methods (PJIMs) for handling with a family of nonconvex composite optimization problems with two splitting variables. To reduce the total computational complexity by decreasing the number of iterations, we devise the accelerated version of PJIMs through the well-known Nesterov's acceleration strategy and further extend both to solve the multivariable cases. Most importantly, we provide a rigorous convergence analysis, in theory, to show that the generated variable sequence globally converges to a critical point by exploiting the Kurdyka-Łojasiewica (KŁ) property for a broad class of functions. Furthermore, we also establish the linear and sublinear convergence rates of the obtained variable sequence in the objective function. As the specific application to the nonconvex sparse and low-rank recovery problems, several numerical experiments can verify that the newly proposed algorithms not only keep fast convergence speed but also have high precision.
Collapse
|
11
|
Dian R, Li S, Fang L. Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2672-2683. [PMID: 30624229 DOI: 10.1109/tnnls.2018.2885616] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyperspectral images (HSIs) with high spectral resolution only have the low spatial resolution. On the contrary, multispectral images (MSIs) with much lower spectral resolution can be obtained with higher spatial resolution. Therefore, fusing the high-spatial-resolution MSI (HR-MSI) with low-spatial-resolution HSI of the same scene has become the very popular HSI super-resolution scheme. In this paper, a novel low tensor-train (TT) rank (LTTR)-based HSI super-resolution method is proposed, where an LTTR prior is designed to learn the correlations among the spatial, spectral, and nonlocal modes of the nonlocal similar high-spatial-resolution HSI (HR-HSI) cubes. First, we cluster the HR-MSI cubes as many groups based on their similarities, and the HR-HSI cubes are also clustered according to the learned cluster structure in the HR-MSI cubes. The HR-HSI cubes in each group are much similar to each other and can constitute a 4-D tensor, whose four modes are highly correlated. Therefore, we impose the LTTR constraint on these 4-D tensors, which can effectively learn the correlations among the spatial, spectral, and nonlocal modes because of the well-balanced matricization scheme of TT rank. We formulate the super-resolution problem as TT rank regularized optimization problem, which is solved via the scheme of alternating direction method of multipliers. Experiments on HSI data sets indicate the effectiveness of the LTTR-based method.
Collapse
|
12
|
Wang L, Wang B, Zhang Z, Ye Q, Fu L, Liu G, Wang M. Robust auto-weighted projective low-rank and sparse recovery for visual representation. Neural Netw 2019; 117:201-215. [PMID: 31174048 DOI: 10.1016/j.neunet.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 03/19/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Most existing low-rank and sparse representation models cannot preserve the local manifold structures of samples adaptively, or separate the locality preservation from the coding process, which may result in the decreased performance. In this paper, we propose an inductive Robust Auto-weighted Low-Rank and Sparse Representation (RALSR) framework by joint feature embedding for the salient feature extraction of high-dimensional data. Technically, the model of our RALSR seamlessly integrates the joint low-rank and sparse recovery with robust salient feature extraction. Specifically, RALSR integrates the adaptive locality preserving weighting, joint low-rank/sparse representation and the robustness-promoting representation into a unified model. For accurate similarity measure, RALSR computes the adaptive weights by minimizing the joint reconstruction errors over the recovered clean data and salient features simultaneously, where L1-norm is also applied to ensure the sparse properties of learnt weights. The joint minimization can also potentially enable the weight matrix to have the power to remove noise and unfavorable features by reconstruction adaptively. The underlying projection is encoded by a joint low-rank and sparse regularization, which can ensure it to be powerful for salient feature extraction. Thus, the calculated low-rank sparse features of high-dimensional data would be more accurate for the subsequent classification. Visual and numerical comparison results demonstrate the effectiveness of our RALSR for data representation and classification.
Collapse
Affiliation(s)
- Lei Wang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Bangjun Wang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhao Zhang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China; School of Computer Science & School of Artificial Intelligence, Hefei University of Technology, Hefei, China.
| | - Qiaolin Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Liyong Fu
- Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China.
| | - Guangcan Liu
- School of Information and Control, Nanjing University of Information Science and Technology, Nanjing, China
| | - Meng Wang
- School of Computer Science & School of Artificial Intelligence, Hefei University of Technology, Hefei, China
| |
Collapse
|
13
|
Subspace structural constraint-based discriminative feature learning via nonnegative low rank representation. PLoS One 2019; 14:e0215450. [PMID: 31063497 PMCID: PMC6504107 DOI: 10.1371/journal.pone.0215450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/02/2019] [Indexed: 11/25/2022] Open
Abstract
Feature subspace learning plays a significant role in pattern recognition, and many efforts have been made to generate increasingly discriminative learning models. Recently, several discriminative feature learning methods based on a representation model have been proposed, which have not only attracted considerable attention but also achieved success in practical applications. Nevertheless, these methods for constructing the learning model simply depend on the class labels of the training instances and fail to consider the essential subspace structural information hidden in them. In this paper, we propose a robust feature subspace learning approach based on a low-rank representation. In our approach, the low-rank representation coefficients are considered as weights to construct the constraint item for feature learning, which can introduce a subspace structural similarity constraint in the proposed learning model for facilitating data adaptation and robustness. Moreover, by placing the subspace learning and low-rank representation into a unified framework, they can benefit each other during the iteration process to realize an overall optimum. To achieve extra discrimination, linear regression is also incorporated into our model to enforce the projection features around and close to their label-based centers. Furthermore, an iterative numerical scheme is designed to solve our proposed objective function and ensure convergence. Extensive experimental results obtained using several public image datasets demonstrate the advantages and effectiveness of our novel approach compared with those of the existing methods.
Collapse
|
14
|
Lu Y, Lai Z, Li X, Wong WK, Yuan C, Zhang D. Low-Rank 2-D Neighborhood Preserving Projection for Enhanced Robust Image Representation. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:1859-1872. [PMID: 29994294 DOI: 10.1109/tcyb.2018.2815559] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
2-D neighborhood preserving projection (2DNPP) uses 2-D images as feature input instead of 1-D vectors used by neighborhood preserving projection (NPP). 2DNPP requires less computation time than NPP. However, both NPP and 2DNPP use the L 2 norm as a metric, which is sensitive to noise in data. In this paper, we proposed a novel NPP method called low-rank 2DNPP (LR-2DNPP). This method divided the input data into a component part that encoded low-rank features, and an error part that ensured the noise was sparse. Then, a nearest neighbor graph was learned from the clean data using the same procedure as 2DNPP. To ensure that the features learned by LR-2DNPP were optimal for classification, we combined the structurally incoherent learning and low-rank learning with NPP to form a unified model called discriminative LR-2DNPP (DLR-2DNPP). By encoding the structural incoherence of the learned clean data, DLR-2DNPP could enhance the discriminative ability for feature extraction. Theoretical analyses on the convergence and computational complexity of LR-2DNPP and DLR-2DNPP were presented in details. We used seven public image databases to verify the performance of the proposed methods. The experimental results showed the effectiveness of our methods for robust image representation.
Collapse
|
15
|
Li P, Feng J, Jin X, Zhang L, Xu X, Yan S. Online Robust Low-Rank Tensor Modeling for Streaming Data Analysis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1061-1075. [PMID: 30130238 DOI: 10.1109/tnnls.2018.2860964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tensor data (i.e., the data having multiple dimensions) are quickly growing in scale in many practical applications, which poses new challenges for data modeling and analysis approaches, such as high-order relations of large complexity, gross noise, and varying data scale. Existing low-rank data analysis methods, which are effective at analyzing matrix data, may fail in the regime of tensor data due to these challenges. A robust and scalable low-rank tensor modeling method is heavily desired. In this paper, we develop an online robust low-rank tensor modeling (ORLTM) method to address these challenges. The ORLTM method leverages the high-order correlations among all tensor modes to model an intrinsic low-rank structure of streaming tensor data online and can effectively analyze data residing in a mixture of multiple subspaces by virtue of dictionary learning. ORLTM consumes a very limited memory space that remains constant regardless of the increase of tensor data size, which facilitates processing tensor data at a large scale. More concretely, it models each mode unfolding of streaming tensor data using the bilinear formulation of tensor nuclear norms. With this reformulation, ORLTM employs a stochastic optimization algorithm to learn the tensor low-rank structure alternatively for online updating. To capture the final tensors, ORLTM uses an average pooling operation on folded tensors in all modes. We also provide the analysis regarding computational complexity, memory cost, and convergence. Moreover, we extend ORLTM to the image alignment scenario by incorporating the geometrical transformations and linearizing the constraints. Extensive empirical studies on synthetic database and three practical vision tasks, including video background subtraction, image alignment, and visual tracking, have demonstrated the superiority of the proposed method.
Collapse
|
16
|
Li J. Unsupervised robust discriminative manifold embedding with self-expressiveness. Neural Netw 2019; 113:102-115. [PMID: 30856510 DOI: 10.1016/j.neunet.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/07/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
Dimensionality reduction has obtained increasing attention in the machine learning and computer vision communities due to the curse of dimensionality. Many manifold embedding methods have been proposed for dimensionality reduction. Many of them are supervised and based on graph regularization whose weight affinity is determined by original noiseless data. When data are noisy, their performance may degrade. To address this issue, we present a novel unsupervised robust discriminative manifold embedding approach called URDME, which aims to offer a joint framework of dimensionality reduction, discriminative subspace learning , robust affinity representation and discriminative manifold embedding. The learned robust affinity not only captures the global geometry and intrinsic structure of underlying high-dimensional data, but also satisfies the self-expressiveness property. In addition, the learned projection matrix owns discriminative ability in the low-dimensional subspace. Experimental results on several public benchmark datasets corroborate the effectiveness of our approach and show its competitive performance compared with the related methods.
Collapse
Affiliation(s)
- Jianwei Li
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
17
|
Chu J, Gu H, Su Y, Jing P. Towards a sparse low-rank regression model for memorability prediction of images. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Fang X, Han N, Wu J, Xu Y, Yang J, Wong WK, Li X. Approximate Low-Rank Projection Learning for Feature Extraction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:5228-5241. [PMID: 29994377 DOI: 10.1109/tnnls.2018.2796133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Feature extraction plays a significant role in pattern recognition. Recently, many representation-based feature extraction methods have been proposed and achieved successes in many applications. As an excellent unsupervised feature extraction method, latent low-rank representation (LatLRR) has shown its power in extracting salient features. However, LatLRR has the following three disadvantages: 1) the dimension of features obtained using LatLRR cannot be reduced, which is not preferred in feature extraction; 2) two low-rank matrices are separately learned so that the overall optimality may not be guaranteed; and 3) LatLRR is an unsupervised method, which by far has not been extended to the supervised scenario. To this end, in this paper, we first propose to use two different matrices to approximate the low-rank projection in LatLRR so that the dimension of obtained features can be reduced, which is more flexible than original LatLRR. Then, we treat the two low-rank matrices in LatLRR as a whole in the process of learning. In this way, they can be boosted mutually so that the obtained projection can extract more discriminative features. Finally, we extend LatLRR to the supervised scenario by integrating feature extraction with the ridge regression. Thus, the process of feature extraction is closely related to the classification so that the extracted features are discriminative. Extensive experiments are conducted on different databases for unsupervised and supervised feature extraction, and very encouraging results are achieved in comparison with many state-of-the-arts methods.
Collapse
|
19
|
Zhao X, An G, Cen Y, Wang H, Zhao R. Robust discriminant low-rank representation for subspace clustering. Soft comput 2018. [DOI: 10.1007/s00500-018-3339-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Guo K, Liu L, Xu X, Xu D, Tao D, Guo K, Tao D, Xu X, Liu L, Xu D. GoDec+: Fast and Robust Low-Rank Matrix Decomposition Based on Maximum Correntropy. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:2323-2336. [PMID: 28436892 DOI: 10.1109/tnnls.2016.2643286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
GoDec is an efficient low-rank matrix decomposition algorithm. However, optimal performance depends on sparse errors and Gaussian noise. This paper aims to address the problem that a matrix is composed of a low-rank component and unknown corruptions. We introduce a robust local similarity measure called correntropy to describe the corruptions and, in doing so, obtain a more robust and faster low-rank decomposition algorithm: GoDec+. Based on half-quadratic optimization and greedy bilateral paradigm, we deliver a solution to the maximum correntropy criterion (MCC)-based low-rank decomposition problem. Experimental results show that GoDec+ is efficient and robust to different corruptions including Gaussian noise, Laplacian noise, salt & pepper noise, and occlusion on both synthetic and real vision data. We further apply GoDec+ to more general applications including classification and subspace clustering. For classification, we construct an ensemble subspace from the low-rank GoDec+ matrix and introduce an MCC-based classifier. For subspace clustering, we utilize GoDec+ values low-rank matrix for MCC-based self-expression and combine it with spectral clustering. Face recognition, motion segmentation, and face clustering experiments show that the proposed methods are effective and robust. In particular, we achieve the state-of-the-art performance on the Hopkins 155 data set and the first 10 subjects of extended Yale B for subspace clustering.
Collapse
|
21
|
Fang X, Teng S, Lai Z, He Z, Xie S, Wong WK, He Z, Wong WK, Xie S, Fang X, Lai Z, Teng S. Robust Latent Subspace Learning for Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:2502-2515. [PMID: 28500010 DOI: 10.1109/tnnls.2017.2693221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper proposes a novel method, called robust latent subspace learning (RLSL), for image classification. We formulate an RLSL problem as a joint optimization problem over both the latent SL and classification model parameter predication, which simultaneously minimizes: 1) the regression loss between the learned data representation and objective outputs and 2) the reconstruction error between the learned data representation and original inputs. The latent subspace can be used as a bridge that is expected to seamlessly connect the origin visual features and their class labels and hence improve the overall prediction performance. RLSL combines feature learning with classification so that the learned data representation in the latent subspace is more discriminative for classification. To learn a robust latent subspace, we use a sparse item to compensate error, which helps suppress the interference of noise via weakening its response during regression. An efficient optimization algorithm is designed to solve the proposed optimization problem. To validate the effectiveness of the proposed RLSL method, we conduct experiments on diverse databases and encouraging recognition results are achieved compared with many state-of-the-arts methods.
Collapse
|
22
|
Shao M, Zhang Y, Fu Y. Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:1019-1032. [PMID: 28166506 DOI: 10.1109/tnnls.2017.2648122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Learning discriminant face representation for pose-invariant face recognition has been identified as a critical issue in visual learning systems. The challenge lies in the drastic changes of facial appearances between the test face and the registered face. To that end, we propose a high-level feature learning framework called "collaborative random faces (RFs)-guided encoders" toward this problem. The contributions of this paper are three fold. First, we propose a novel supervised autoencoder that is able to capture the high-level identity feature despite of pose variations. Second, we enrich the identity features by replacing the target values of conventional autoencoders with random signals (RFs in this paper), which are unique for each subject under different poses. Third, we further improve the performance of the framework by incorporating deep convolutional neural network facial descriptors and linking discriminative identity features from different RFs for the augmented identity features. Finally, we conduct face identification experiments on Multi-PIE database, and face verification experiments on labeled faces in the wild and YouTube Face databases, where face recognition rate and verification accuracy with Receiver Operating Characteristic curves are rendered. In addition, discussions of model parameters and connections with the existing methods are provided. These experiments demonstrate that our learning system works fairly well on handling pose variations.
Collapse
|
23
|
Kong Y, Shao M, Li K, Fu Y. Probabilistic Low-Rank Multitask Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:670-680. [PMID: 28060715 DOI: 10.1109/tnnls.2016.2641160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we consider the problem of learning multiple related tasks simultaneously with the goal of improving the generalization performance of individual tasks. The key challenge is to effectively exploit the shared information across multiple tasks as well as preserve the discriminative information for each individual task. To address this, we propose a novel probabilistic model for multitask learning (MTL) that can automatically balance between low-rank and sparsity constraints. The former assumes a low-rank structure of the underlying predictive hypothesis space to explicitly capture the relationship of different tasks and the latter learns the incoherent sparse patterns private to each task. We derive and perform inference via variational Bayesian methods. Experimental results on both regression and classification tasks on real-world applications demonstrate the effectiveness of the proposed method in dealing with the MTL problems.
Collapse
|
24
|
Li S, Li K, Fu Y. Self-Taught Low-Rank Coding for Visual Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:645-656. [PMID: 28060712 DOI: 10.1109/tnnls.2016.2633275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lack of labeled data presents a common challenge in many computer vision and machine learning tasks. Semisupervised learning and transfer learning methods have been developed to tackle this challenge by utilizing auxiliary samples from the same domain or from a different domain, respectively. Self-taught learning, which is a special type of transfer learning, has fewer restrictions on the choice of auxiliary data. It has shown promising performance in visual learning. However, existing self-taught learning methods usually ignore the structure information in data. In this paper, we focus on building a self-taught coding framework, which can effectively utilize the rich low-level pattern information abstracted from the auxiliary domain, in order to characterize the high-level structural information in the target domain. By leveraging a high quality dictionary learned across auxiliary and target domains, the proposed approach learns expressive codings for the samples in the target domain. Since many types of visual data have been proven to contain subspace structures, a low-rank constraint is introduced into the coding objective to better characterize the structure of the given target set. The proposed representation learning framework is called self-taught low-rank (S-Low) coding, which can be formulated as a nonconvex rank-minimization and dictionary learning problem. We devise an efficient majorization-minimization augmented Lagrange multiplier algorithm to solve it. Based on the proposed S-Low coding mechanism, both unsupervised and supervised visual learning algorithms are derived. Extensive experiments on five benchmark data sets demonstrate the effectiveness of our approach.
Collapse
|
25
|
Zhou P, Lu C, Lin Z, Zhang C. Tensor Factorization for Low-Rank Tensor Completion. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2018; 27:1152-1163. [PMID: 29028199 DOI: 10.1109/tip.2017.2762595] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.
Collapse
|
26
|
Ding Z, Shao M, Fu Y. Incomplete Multisource Transfer Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:310-323. [PMID: 28113958 DOI: 10.1109/tnnls.2016.2618765] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transfer learning is generally exploited to adapt well-established source knowledge for learning tasks in weakly labeled or unlabeled target domain. Nowadays, it is common to see multiple sources available for knowledge transfer, each of which, however, may not include complete classes information of the target domain. Naively merging multiple sources together would lead to inferior results due to the large divergence among multiple sources. In this paper, we attempt to utilize incomplete multiple sources for effective knowledge transfer to facilitate the learning task in target domain. To this end, we propose an incomplete multisource transfer learning through two directional knowledge transfer, i.e., cross-domain transfer from each source to target, and cross-source transfer. In particular, in cross-domain direction, we deploy latent low-rank transfer learning guided by iterative structure learning to transfer knowledge from each single source to target domain. This practice reinforces to compensate for any missing data in each source by the complete target data. While in cross-source direction, unsupervised manifold regularizer and effective multisource alignment are explored to jointly compensate for missing data from one portion of source to another. In this way, both marginal and conditional distribution discrepancy in two directions would be mitigated. Experimental results on standard cross-domain benchmarks and synthetic data sets demonstrate the effectiveness of our proposed model in knowledge transfer from incomplete multiple sources.
Collapse
|
27
|
Zhou P, Zhang C, Lin Z. Bilevel Model-Based Discriminative Dictionary Learning for Recognition. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2017; 26:1173-1187. [PMID: 27831875 DOI: 10.1109/tip.2016.2623487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Most supervised dictionary learning methods optimize the combinations of reconstruction error, sparsity prior, and discriminative terms. Thus, the learnt dictionaries may not be optimal for recognition tasks. Also, the sparse codes learning models in the training and the testing phases are inconsistent. Besides, without utilizing the intrinsic data structure, many dictionary learning methods only employ the l0 or l1 norm to encode each datum independently, limiting the performance of the learnt dictionaries. We present a novel bilevel model-based discriminative dictionary learning method for recognition tasks. The upper level directly minimizes the classification error, while the lower level uses the sparsity term and the Laplacian term to characterize the intrinsic data structure. The lower level is subordinate to the upper level. Therefore, our model achieves an overall optimality for recognition in that the learnt dictionary is directly tailored for recognition. Moreover, the sparse codes learning models in the training and the testing phases can be the same. We further propose a novel method to solve our bilevel optimization problem. It first replaces the lower level with its Karush-Kuhn-Tucker conditions and then applies the alternating direction method of multipliers to solve the equivalent problem. Extensive experiments demonstrate the effectiveness and robustness of our method.
Collapse
|