1
|
Ma J, Kou W, Lin M, Cho CCM, Chiu B. Multimodal Image Classification by Multiview Latent Pattern Extraction, Selection, and Correlation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:8134-8148. [PMID: 37015566 DOI: 10.1109/tnnls.2022.3224946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The large amount of data available in the modern big data era opens new opportunities to expand our knowledge by integrating information from heterogeneous sources. Multiview learning has recently achieved tremendous success in deriving complementary information from multiple data modalities. This article proposes a framework called multiview latent space projection (MVLSP) to integrate features extracted from multiple sources in a discriminative way to facilitate binary and multiclass classifications. Our approach is associated with three innovations. First, most existing multiview learning algorithms promote pairwise consistency between two views and do not have a natural extension to applications with more than two views. MVLSP finds optimum mappings from a common latent space to match the feature space in each of the views. As the matching is performed on a view-by-view basis, the framework can be readily extended to multiview applications. Second, feature selection in the common latent space can be readily achieved by adding a class view, which matches the latent space representations of training samples with their corresponding labels. Then, high-order view correlations are extracted by considering feature-label correlations. Third, a technique is proposed to optimize the integration of different latent patterns based on their correlations. The experimental results on the prostate image dataset demonstrate the effectiveness of the proposed method.
Collapse
|
2
|
Lai Z, Chen X, Zhang J, Kong H, Wen J. Maximal Margin Support Vector Machine for Feature Representation and Classification. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:6700-6713. [PMID: 37018685 DOI: 10.1109/tcyb.2022.3232800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High-dimensional small sample size data, which may lead to singularity in computation, are becoming increasingly common in the field of pattern recognition. Moreover, it is still an open problem how to extract the most suitable low-dimensional features for the support vector machine (SVM) and simultaneously avoid singularity so as to enhance the SVM's performance. To address these problems, this article designs a novel framework that integrates the discriminative feature extraction and sparse feature selection into the support vector framework to make full use of the classifiers' characteristics to find the optimal/maximal classification margin. As such, the extracted low-dimensional features from high-dimensional data are more suitable for SVM to obtain good performance. Thus, a novel algorithm, called the maximal margin SVM (MSVM), is proposed to achieve this goal. An alternatively iterative learning strategy is adopted in MSVM to learn the optimal discriminative sparse subspace and the corresponding support vectors. The mechanism and the essence of the designed MSVM are revealed. The computational complexity and convergence are also analyzed and validated. Experimental results on some well-known databases (including breastmnist, pneumoniamnist, colon-cancer, etc.) show the great potential of MSVM against classical discriminant analysis methods and SVM-related methods, and the codes can be available on https://www.scholat.com/laizhihui.
Collapse
|
3
|
Multiview nonlinear discriminant structure learning for emotion recognition. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Zhang W, Deng Z, Wang J, Choi KS, Zhang T, Luo X, Shen H, Ying W, Wang S. Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:11226-11239. [PMID: 34043519 DOI: 10.1109/tcyb.2021.3071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods.
Collapse
|
5
|
Multi-view knowledge graph fusion via knowledge-aware attentional graph neural network. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Chao G, Sun S, Bi J. A Survey on Multi-View Clustering. IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2022; 2:146-168. [PMID: 35308425 DOI: 10.1109/tai.2021.3065894] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multi-view data. Multi-view clustering, that clusters subjects into subgroups using multi-view data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar to other machine learning methods, we categorize them into generative and discriminative classes. In discriminative class, based on the way of view integration, we split it further into five groups: Common Eigenvector Matrix, Common Coefficient Matrix, Common Indicator Matrix, Direct Combination and Combination After Projection. Furthermore, we relate MVC to other topics: multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated for practitioners. Some benchmark multi-view datasets are introduced and representative MVC algorithms from each group are empirically evaluated to analyze how they perform on benchmark datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination.
Collapse
Affiliation(s)
- Guoqing Chao
- School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, PR China
| | - Shiliang Sun
- School of Computer Science and Technology, East China Normal University, Shanghai, Shanghai 200062 China
| | - Jinbo Bi
- Department of Computer Science, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
7
|
Online unsupervised cross-view discrete hashing for large-scale retrieval. APPL INTELL 2022. [DOI: 10.1007/s10489-021-03014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
|
9
|
Mao L, Sun S. Multiview Variational Sparse Gaussian Processes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2875-2885. [PMID: 32701454 DOI: 10.1109/tnnls.2020.3008496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gaussian process (GP) models are flexible nonparametric models widely used in a variety of tasks. Variational sparse GP (VSGP) scales GP models to large data sets by summarizing the posterior process with a set of inducing points. In this article, we extend VSGP to handle multiview data. We model each view with a VSGP and augment it with an additional set of inducing points. These VSGPs are coupled together by enforcing the means of their posteriors to agree at the locations of these inducing points. To learn these shared inducing points, we introduce an additional GP model that is defined in the concatenated feature space. Experiments on real-world data sets show that our multiview VSGP (MVSGP) model outperforms single-view VSGP consistently and is superior to state-of-the-art kernel-based multiview baselines for classification tasks.
Collapse
|
10
|
Hussain L, Huang P, Nguyen T, Lone KJ, Ali A, Khan MS, Li H, Suh DY, Duong TQ. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response. Biomed Eng Online 2021; 20:63. [PMID: 34183038 PMCID: PMC8240261 DOI: 10.1186/s12938-021-00899-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose This study used machine learning classification of texture features from MRI of breast tumor and peri-tumor at multiple treatment time points in conjunction with molecular subtypes to predict eventual pathological complete response (PCR) to neoadjuvant chemotherapy. Materials and method This study employed a subset of patients (N = 166) with PCR data from the I-SPY-1 TRIAL (2002–2006). This cohort consisted of patients with stage 2 or 3 breast cancer that underwent anthracycline–cyclophosphamide and taxane treatment. Magnetic resonance imaging (MRI) was acquired pre-neoadjuvant chemotherapy, early, and mid-treatment. Texture features were extracted from post-contrast-enhanced MRI, pre- and post-contrast subtraction images, and with morphological dilation to include peri-tumoral tissue. Molecular subtypes and Ki67 were also included in the prediction model. Performance of classification models used the receiver operating characteristics curve analysis including area under the curve (AUC). Statistical analysis was done using unpaired two-tailed t-tests. Results Molecular subtypes alone yielded moderate prediction performance of PCR (AUC = 0.82, p = 0.07). Pre-, early, and mid-treatment data alone yielded moderate performance (AUC = 0.88, 0.72, and 0.78, p = 0.03, 0.13, 0.44, respectively). The combined pre- and early treatment data markedly improved performance (AUC = 0.96, p = 0.0003). Addition of molecular subtypes improved performance slightly for individual time points but substantially for the combined pre- and early treatment (AUC = 0.98, p = 0.0003). The optimal morphological dilation was 3–5 pixels. Subtraction of post- and pre-contrast MRI further improved performance (AUC = 0.98, p = 0.00003). Finally, among the machine-learning algorithms evaluated, the RUSBoosted Tree machine-learning method yielded the highest performance. Conclusion AI-classification of texture features from MRI of breast tumor at multiple treatment time points accurately predicts eventual PCR. Longitudinal changes in texture features and peri-tumoral features further improve PCR prediction performance. Accurate assessment of treatment efficacy early on could minimize unnecessary toxic chemotherapy and enable mid-treatment modification for patients to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Lal Hussain
- Department of Computer Science & IT, Neelum Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.,Department of Computer Science & IT, King Abdullah Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.,Department of Radiology, Renaissance School of Medicine At Stony, Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.,Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY, 10467, USA
| | - Pauline Huang
- Department of Radiology, Renaissance School of Medicine At Stony, Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Tony Nguyen
- Department of Radiology, Renaissance School of Medicine At Stony, Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Kashif J Lone
- Department of Computer Science & IT, King Abdullah Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Amjad Ali
- Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Salman Khan
- Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Haifang Li
- Department of Radiology, Renaissance School of Medicine At Stony, Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Doug Young Suh
- College of Electronics and Convergence Engineering, Kyung Hee University, Seoul, South Korea.
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY, 10467, USA
| |
Collapse
|
11
|
|
12
|
Huo Y, Wong DF, Ni LM, Chao LS, Zhang J. HeTROPY: Explainable learning diagnostics via heterogeneous maximum-entropy and multi-spatial knowledge representation. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Chao G, Sun J, Lu J, Wang AL, Langleben DD, Li CS, Bi J. Multi-View Cluster Analysis with Incomplete Data to Understand Treatment Effects. Inf Sci (N Y) 2020; 494:278-293. [PMID: 32863420 DOI: 10.1016/j.ins.2019.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multi-view cluster analysis, as a popular granular computing method, aims to partition sample subjects into consistent clusters across different views in which the subjects are characterized. Frequently, data entries can be missing from some of the views. The latest multi-view co-clustering methods cannot effectively deal with incomplete data, especially when there are mixed patterns of missing values. We propose an enhanced formulation for a family of multi-view co-clustering methods to cope with the missing data problem by introducing an indicator matrix whose elements indicate which data entries are observed and assessing cluster validity only on observed entries. In comparison with the simple strategy of removing subjects with missing values, our approach can use all available data in cluster analysis. In comparison with common methods that impute missing data in order to use regular multi-view analytics, our approach is less sensitive to imputation uncertainty. In comparison with other state-of-the-art multi-view incomplete clustering methods, our approach is sensible in the cases of missing any value in a view or missing the entire view, the most common scenario in practice. We first validated the proposed strategy in simulations, and then applied it to a treatment study of heroin dependence which would have been impossible with previous methods due to a number of missing-data patterns. Patients in a treatment study were naturally assessed in different feature spaces such as in the pre-, during-and post-treatment time windows. Our algorithm was able to identify subgroups where patients in each group showed similarities in all of the three time windows, thus leading to the recognition of pre-treatment (baseline) features predictive of post-treatment outcomes.
Collapse
Affiliation(s)
- Guoqing Chao
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Jiangwen Sun
- Department of Computer Science Old Dominion University, Norfolk, Virginia, USA
| | - Jin Lu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - An-Li Wang
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel D Langleben
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chiang-Shan Li
- Department of Psychiatry Yale University, New Haven, CT, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
14
|
Multi-view semi-supervised least squares twin support vector machines with manifold-preserving graph reduction. INT J MACH LEARN CYB 2020. [DOI: 10.1007/s13042-020-01134-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Jiang Z, Bian Z, Wang S. Multi-view local linear KNN classification: theoretical and experimental studies on image classification. INT J MACH LEARN CYB 2020. [DOI: 10.1007/s13042-019-00992-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
|
17
|
|
18
|
|
19
|
Recent Advances in Supervised Dimension Reduction: A Survey. MACHINE LEARNING AND KNOWLEDGE EXTRACTION 2019. [DOI: 10.3390/make1010020] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, we have witnessed an explosive growth in both the quantity and dimension of data generated, which aggravates the high dimensionality challenge in tasks such as predictive modeling and decision support. Up to now, a large amount of unsupervised dimension reduction methods have been proposed and studied. However, there is no specific review focusing on the supervised dimension reduction problem. Most studies performed classification or regression after unsupervised dimension reduction methods. However, we recognize the following advantages if learning the low-dimensional representation and the classification/regression model simultaneously: high accuracy and effective representation. Considering classification or regression as being the main goal of dimension reduction, the purpose of this paper is to summarize and organize the current developments in the field into three main classes: PCA-based, Non-negative Matrix Factorization (NMF)-based, and manifold-based supervised dimension reduction methods, as well as provide elaborated discussions on their advantages and disadvantages. Moreover, we outline a dozen open problems that can be further explored to advance the development of this topic.
Collapse
|
20
|
RETRACTED ARTICLE: Multi-view Sparse Vector Decomposition to Deal with Missing Values in Alcohol Dependence Study. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Costa VS, Farias ADS, Bedregal B, Santiago RH, Canuto AMDP. Combining multiple algorithms in classifier ensembles using generalized mixture functions. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Huang P, Xie X, Sun S. Multi-view Opinion Mining with Deep Learning. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Tang J, Tian Y, Zhang P, Liu X. Multiview Privileged Support Vector Machines. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:3463-3477. [PMID: 28809717 DOI: 10.1109/tnnls.2017.2728139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiview learning (MVL), by exploiting the complementary information among multiple feature sets, can improve the performance of many existing learning tasks. Support vector machine (SVM)-based models have been frequently used for MVL. A typical SVM-based MVL model is SVM-2K, which extends SVM for MVL by using the distance minimization version of kernel canonical correlation analysis. However, SVM-2K cannot fully unleash the power of the complementary information among different feature views. Recently, a framework of learning using privileged information (LUPI) has been proposed to model data with complementary information. Motivated by LUPI, we propose a new multiview privileged SVM model, multi-view privileged SVM model (PSVM-2V), for MVL. This brings a new perspective that extends LUPI to MVL. The optimization of PSVM-2V can be solved by the classical quadratic programming solver. We theoretically analyze the performance of PSVM-2V from the viewpoints of the consensus principle, the generalization error bound, and the SVM-2K learning model. Experimental results on 95 binary data sets demonstrate the effectiveness of the proposed method.
Collapse
|
24
|
|
25
|
Gui J, Liu T, Sun Z, Tao D, Tan T. Supervised Discrete Hashing With Relaxation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:608-617. [PMID: 28055923 DOI: 10.1109/tnnls.2016.2636870] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Data-dependent hashing has recently attracted attention due to being able to support efficient retrieval and storage of high-dimensional data, such as documents, images, and videos. In this paper, we propose a novel learning-based hashing method called "supervised discrete hashing with relaxation" (SDHR) based on "supervised discrete hashing" (SDH). SDH uses ordinary least squares regression and traditional zero-one matrix encoding of class label information as the regression target (code words), thus fixing the regression target. In SDHR, the regression target is instead optimized. The optimized regression target matrix satisfies a large margin constraint for correct classification of each example. Compared with SDH, which uses the traditional zero-one matrix, SDHR utilizes the learned regression target matrix and, therefore, more accurately measures the classification error of the regression model and is more flexible. As expected, SDHR generally outperforms SDH. Experimental results on two large-scale image data sets (CIFAR-10 and MNIST) and a large-scale and challenging face data set (FRGC) demonstrate the effectiveness and efficiency of SDHR.
Collapse
|
26
|
|