Wang Y, Ma Z, Chen G. Avoiding Congestion in Cluster Consensus of the Second-Order Nonlinear Multiagent Systems.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;
29:3490-3498. [PMID:
28809714 DOI:
10.1109/tnnls.2017.2726354]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In order to avoid congestion in the second-order nonlinear leader-following multiagent systems over capacity-limited paths, an approach called cluster lag consensus is proposed, which means that the agents in different clusters will pass through the same positions with the same velocities but lag behind the leader at different times. Lyapunov functionals and matrix theory are applied to analyze such cluster lag consensus. It is shown that when the graphic roots of clusters are influenced by the leader and the intracoupling of cluster agents is larger than a threshold, the cluster lag consensus can be achieved. Furthermore, the cluster lag consensus with a time-varying communication topology is investigated. Finally, an illustrative example is presented to demonstrate the effectiveness of the theoretical results. In particular, when the physical sizes of the agents are taken into consideration, it is shown that with a rearrangement and a position transformation, the multiagent system will reach cluster lag consensus in the new coordinate system. This means that all agents in the same cluster will reach consensus on the velocity, but their positions may be different and yet their relative positions converge to a constant asymptotically.
Collapse