1
|
Li P, Gao X, Li C, Yi C, Huang W, Si Y, Li F, Cao Z, Tian Y, Xu P. Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:16181-16195. [PMID: 37463076 DOI: 10.1109/tnnls.2023.3292179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.
Collapse
|
2
|
Li Z, Zheng W, Liu H, Liu J, Yan C, Wang Z, Hu B, Dong Q. Estimating Functional Brain Networks by Low-Rank Representation With Local Constraint. IEEE Trans Neural Syst Rehabil Eng 2024; 32:684-695. [PMID: 38236673 DOI: 10.1109/tnsre.2024.3355769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The functional architecture undergoes alterations during the preclinical phase of Alzheimer's disease. Consequently, the primary research focus has shifted towards identifying Alzheimer's disease and its early stages by constructing a functional connectivity network based on resting-state fMRI data. Recent investigations show that as Alzheimer's Disease (AD) progresses, modular tissue and connections in the core brain areas of AD patients diminish. Sparse learning methods are powerful tools for understanding Functional Brain Networks (FBNs) with Regions of Interest (ROIs) and a connectivity matrix measuring functional coherence between them. However, these tools often focus exclusively on functional connectivity measures, neglecting the brain network's modularity. Modularity orchestrates dynamic activities within the FBN to execute intricate cognitive tasks. To provide a comprehensive delineation of the FBN, we propose a local similarity-constrained low-rank sparse representation (LSLRSR) method that encodes modularity information under a manifold-regularized network learning framework and further formulate it as a low-rank sparse graph learning problem, which can be solved by an efficient optimization algorithm. Specifically, for each modularity structure, the Schatten p-norm regularizer reduces the reconstruction error and provides a better approximation of the low-rank constraint. Furthermore, we adopt a manifold-regularized local similarity prior to infer the intricate relationship between subnetwork similarity and modularity, guiding the modeling of FBN. Additionally, the proximal average method approximates the joint solution's proximal map, and the resulting nonconvex optimization problems are solved using the alternating direction multiplier method (ADMM). Compared to state-of-the-art methods for constructing FBNs, our algorithm generates a more modular FBN. This lays the groundwork for further research into alterations in brain network modularity resulting from diseases.
Collapse
|
3
|
Rakhmatulin I, Dao MS, Nassibi A, Mandic D. Exploring Convolutional Neural Network Architectures for EEG Feature Extraction. SENSORS (BASEL, SWITZERLAND) 2024; 24:877. [PMID: 38339594 PMCID: PMC10856895 DOI: 10.3390/s24030877] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The main purpose of this paper is to provide information on how to create a convolutional neural network (CNN) for extracting features from EEG signals. Our task was to understand the primary aspects of creating and fine-tuning CNNs for various application scenarios. We considered the characteristics of EEG signals, coupled with an exploration of various signal processing and data preparation techniques. These techniques include noise reduction, filtering, encoding, decoding, and dimension reduction, among others. In addition, we conduct an in-depth analysis of well-known CNN architectures, categorizing them into four distinct groups: standard implementation, recurrent convolutional, decoder architecture, and combined architecture. This paper further offers a comprehensive evaluation of these architectures, covering accuracy metrics, hyperparameters, and an appendix that contains a table outlining the parameters of commonly used CNN architectures for feature extraction from EEG signals.
Collapse
Affiliation(s)
- Ildar Rakhmatulin
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| | - Minh-Son Dao
- National Institute of Information and Communications Technology (NICT), Tokyo 184-0015, Japan
| | - Amir Nassibi
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| | - Danilo Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| |
Collapse
|
4
|
Wang W, Qi F, Wipf DP, Cai C, Yu T, Li Y, Zhang Y, Yu Z, Wu W. Sparse Bayesian Learning for End-to-End EEG Decoding. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:15632-15649. [PMID: 37506000 DOI: 10.1109/tpami.2023.3299568] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Decoding brain activity from non-invasive electroencephalography (EEG) is crucial for brain-computer interfaces (BCIs) and the study of brain disorders. Notably, end-to-end EEG decoding has gained widespread popularity in recent years owing to the remarkable advances in deep learning research. However, many EEG studies suffer from limited sample sizes, making it difficult for existing deep learning models to effectively generalize to highly noisy EEG data. To address this fundamental limitation, this paper proposes a novel end-to-end EEG decoding algorithm that utilizes a low-rank weight matrix to encode both spatio-temporal filters and the classifier, all optimized under a principled sparse Bayesian learning (SBL) framework. Importantly, this SBL framework also enables us to learn hyperparameters that optimally penalize the model in a Bayesian fashion. The proposed decoding algorithm is systematically benchmarked on five motor imagery BCI EEG datasets ( N=192) and an emotion recognition EEG dataset ( N=45), in comparison with several contemporary algorithms, including end-to-end deep-learning-based EEG decoding algorithms. The classification results demonstrate that our algorithm significantly outperforms the competing algorithms while yielding neurophysiologically meaningful spatio-temporal patterns. Our algorithm therefore advances the state-of-the-art by providing a novel EEG-tailored machine learning tool for decoding brain activity.
Collapse
|
5
|
Xu J, Zhou E, Qin Z, Bi T, Qin Z. Electroencephalogram-Based Subject Matching Learning (ESML): A Deep Learning Framework on Electroencephalogram-Based Biometrics and Task Identification. Behav Sci (Basel) 2023; 13:765. [PMID: 37754043 PMCID: PMC10525823 DOI: 10.3390/bs13090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
An EEG signal (Electroencephalogram) is a bioelectric phenomenon reflecting human brain activities. In this paper, we propose a novel deep learning framework ESML (EEG-based Subject Matching Learning) using raw EEG signals to learn latent representations for EEG-based user identification and tack classification. ESML consists of two parts: one is the ESML1 model via an LSTM-based method for EEG-user linking, and one is the ESML2 model via a CNN-based method for EEG-task linking. The new model ESML is simple, but effective and efficient. It does not require any restrictions for EEG data collection on motions and thinking for users, and it does not need any EEG preprocessing operations, such as EEG denoising and feature extraction. The experiments were conducted on three public datasets and the results show that ESML performs the best and achieves significant performance improvement when compared to baseline methods (i.e., SVM, LDA, NN, DTS, Bayesian, AdaBoost and MLP). The ESML1 model provided the best precision at 96% with 109 users and the ESML2 model achieved 99% precision at 3-Class task classification. These experimental results provide direct evidence that EEG signals can be used for user identification and task classification.
Collapse
Affiliation(s)
- Jin Xu
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610097, China; (J.X.); (Z.Q.); (Z.Q.)
| | - Erqiang Zhou
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610097, China; (J.X.); (Z.Q.); (Z.Q.)
| | - Zhen Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610097, China; (J.X.); (Z.Q.); (Z.Q.)
| | - Ting Bi
- Department of Computer Science, Maynooth University, W23 F2K8 Maynooth, Ireland
| | - Zhiguang Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610097, China; (J.X.); (Z.Q.); (Z.Q.)
| |
Collapse
|
6
|
Wu Z, She Q, Hou Z, Li Z, Tian K, Ma Y. Multi-source online transfer algorithm based on source domain selection for EEG classification. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4560-4573. [PMID: 36896512 DOI: 10.3934/mbe.2023211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The non-stationary nature of electroencephalography (EEG) signals and individual variability makes it challenging to obtain EEG signals from users by utilizing brain-computer interface techniques. Most of the existing transfer learning methods are based on batch learning in offline mode, which cannot adapt well to the changes generated by EEG signals in the online situation. To address this problem, a multi-source online migrating EEG classification algorithm based on source domain selection is proposed in this paper. By utilizing a small number of labeled samples from the target domain, the source domain selection method selects the source domain data similar to the target data from multiple source domains. After training a classifier for each source domain, the proposed method adjusts the weight coefficients of each classifier according to the prediction results to avoid the negative transfer problem. This algorithm was applied to two publicly available motor imagery EEG datasets, namely, BCI Competition Ⅳ Dataset Ⅱa and BNCI Horizon 2020 Dataset 2, and it achieved average accuracies of 79.29 and 70.86%, respectively, which are superior to those of several multi-source online transfer algorithms, confirming the effectiveness of the proposed algorithm.
Collapse
Affiliation(s)
- Zizhuo Wu
- School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Qingshan She
- School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Zhelong Hou
- School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Zhenyu Li
- School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Kun Tian
- Zhejiang Kende Mechanical & Electrical Corporation
| | - Yuliang Ma
- School of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
7
|
Chen ZS, Kulkarni P(P, Galatzer-Levy IR, Bigio B, Nasca C, Zhang Y. Modern views of machine learning for precision psychiatry. PATTERNS (NEW YORK, N.Y.) 2022; 3:100602. [PMID: 36419447 PMCID: PMC9676543 DOI: 10.1016/j.patter.2022.100602] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In light of the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable AI (XAI) and neuromodulation in a closed human-in-the-loop manner and highlight the ML potential in multi-media information extraction and multi-modal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | | | - Isaac R. Galatzer-Levy
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Meta Reality Lab, New York, NY, USA
| | - Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
8
|
Zhang Y, Zhou T, Wu W, Xie H, Zhu H, Zhou G, Cichocki A. Improving EEG Decoding via Clustering-Based Multitask Feature Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3587-3597. [PMID: 33556021 DOI: 10.1109/tnnls.2021.3053576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate electroencephalogram (EEG) pattern decoding for specific mental tasks is one of the key steps for the development of brain-computer interface (BCI), which is quite challenging due to the considerably low signal-to-noise ratio of EEG collected at the brain scalp. Machine learning provides a promising technique to optimize EEG patterns toward better decoding accuracy. However, existing algorithms do not effectively explore the underlying data structure capturing the true EEG sample distribution and, hence, can only yield a suboptimal decoding accuracy. To uncover the intrinsic distribution structure of EEG data, we propose a clustering-based multitask feature learning algorithm for improved EEG pattern decoding. Specifically, we perform affinity propagation-based clustering to explore the subclasses (i.e., clusters) in each of the original classes and then assign each subclass a unique label based on a one-versus-all encoding strategy. With the encoded label matrix, we devise a novel multitask learning algorithm by exploiting the subclass relationship to jointly optimize the EEG pattern features from the uncovered subclasses. We then train a linear support vector machine with the optimized features for EEG pattern decoding. Extensive experimental studies are conducted on three EEG data sets to validate the effectiveness of our algorithm in comparison with other state-of-the-art approaches. The improved experimental results demonstrate the outstanding superiority of our algorithm, suggesting its prominent performance for EEG pattern decoding in BCI applications.
Collapse
|
9
|
Zhou W, Zhang HT, Wang J. An Efficient Sparse Bayesian Learning Algorithm Based on Gaussian-Scale Mixtures. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3065-3078. [PMID: 33481719 DOI: 10.1109/tnnls.2020.3049056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sparse Bayesian learning (SBL) is a popular machine learning approach with a superior generalization capability due to the sparsity of its adopted model. However, it entails a matrix inversion at each iteration, hindering its practical applications with large-scale data sets. To overcome this bottleneck, we propose an efficient SBL algorithm with O(n2) computational complexity per iteration based on a Gaussian-scale mixture prior model. By specifying two different hyperpriors, the proposed efficient SBL algorithm can meet two different requirements, such as high efficiency and high sparsity. A surrogate function is introduced herein to approximate the posterior density of model parameters and thereby to avoid matrix inversions. Using a data-dependent term, a joint cost function with separate penalty terms is reformulated in a joint space of model parameters and hyperparameters. The resulting nonconvex optimization problem is solved using a block coordinate descent method in a majorization-minimization framework. Finally, the results of extensive experiments for sparse signal recovery and sparse image reconstruction on benchmark problems are elaborated to substantiate the effectiveness and superiority of the proposed approach in terms of computational time and estimation error.
Collapse
|
10
|
Zhao X, Jin J, Xu R, Li S, Sun H, Wang X, Cichocki A. A Regional Smoothing Block Sparse Bayesian Learning Method With Temporal Correlation for Channel Selection in P300 Speller. Front Hum Neurosci 2022; 16:875851. [PMID: 35754766 PMCID: PMC9231363 DOI: 10.3389/fnhum.2022.875851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The P300-based brain-computer interfaces (BCIs) enable participants to communicate by decoding the electroencephalography (EEG) signal. Different regions of the brain correspond to various mental activities. Therefore, removing weak task-relevant and noisy channels through channel selection is necessary when decoding a specific type of activity from EEG. It can improve the recognition accuracy and reduce the training time of the subsequent models. This study proposes a novel block sparse Bayesian-based channel selection method for the P300 speller. In this method, we introduce block sparse Bayesian learning (BSBL) into the channel selection of P300 BCI for the first time and propose a regional smoothing BSBL (RSBSBL) by combining the spatial distribution properties of EEG. The RSBSBL can determine the number of channels adaptively. To ensure practicality, we design an automatic selection iteration strategy model to reduce the time cost caused by the inverse operation of the large-size matrix. We verified the proposed method on two public P300 datasets and on our collected datasets. The experimental results show that the proposed method can remove the inferior channels and work with the classifier to obtain high-classification accuracy. Hence, RSBSBL has tremendous potential for channel selection in P300 tasks.
Collapse
Affiliation(s)
- Xueqing Zhao
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Jing Jin
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
- Shenzhen Research Institute of East China University of Technology, Shenzhen, China
| | - Ren Xu
- g.tec medical engineering GmbH, Graz, Austria
| | - Shurui Li
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Hao Sun
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Xingyu Wang
- The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Systems Research Institute of Polish Academy of Science, Warsaw, Poland
- Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
11
|
Yu Z, Chen W, Zhang T. Motor imagery EEG classification algorithm based on improved lightweight feature fusion network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ni Z, Xu J, Wu Y, Li M, Xu G, Xu B. Improving Cross-State and Cross-Subject Visual ERP-based BCI with Temporal Modeling and Adversarial Training. IEEE Trans Neural Syst Rehabil Eng 2022; 30:369-379. [PMID: 35133966 DOI: 10.1109/tnsre.2022.3150007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain-computer interface (BCI) is a useful device for people without relying on peripheral nerves and muscles. However, the performance of the event-related potential (ERP)-based BCI declines when applying it to real environments, especially in cross-state and cross-subject conditions. Here we employ temporal modeling and adversarial training to improve the visual ERP-based BCI under different mental workload states and to alleviate the problems above. The rationality of our method is that the ERP-based BCI is based on electroencephalography (EEG) signals recorded from the scalp's surface, continuously changing with time and somewhat stochastic. In this paper, we propose a hierarchical recurrent network to encode all ERP signals in each repetition at the same time and model them with a temporal manner to predict which visual event elicited an ERP. The hierarchical architecture is a simple yet effective method for organizing recurrent layers in a deep structure to model long sequence signals. Taking a cue from recent advances in adversarial training, we further applied dynamic adversarial perturbations to create adversarial examples to enhance the model performance. We conduct our experiments on one published visual ERP-based BCI task with 15 subjects and 3 different auditory workload states. The results indicate that our hierarchical method can effectively model the long sequence EEG raw data, outperform the baselines on most conditions, including cross-state and cross-subject conditions. Finally, we show how deep learning-based methods with limited EEG data can improve ERP-based BCI with adversarial training. Our code will be released at https://github.com/aispeech-lab/VisBCI.
Collapse
|
13
|
Bhosale S, Chakraborty R, Kopparapu SK. Calibration free meta learning based approach for subject independent EEG emotion recognition. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
High-Precise Bipolar Disorder Detection by Using Radial Basis Functions Based Neural Network. ELECTRONICS 2022. [DOI: 10.3390/electronics11030343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Presently, several million people suffer from major depressive and bipolar disorders. Thus, the modelling, characterization, classification, diagnosis, and analysis of such mental disorders bears great significance in medical research. Electroencephalogram records provide important information to improve clinical diagnosis and are very useful in the scientific community. In this work, electroencephalogram records and patient data from the Hospital Virgen de la Luz in Cuenca (Spain) were processed for a correct classification of bipolar disorders. This work implemented an innovative radial basis function-based neural network employing a fuzzy means algorithm. The results show that the proposed method is an effective approach for discrimination of two kinds of classes, i.e., bipolar disorder patients and healthy persons. The proposed algorithm achieved the best performance compared with other machine learning techniques such as Bayesian linear discriminant analysis, Gaussian naive Bayes, decision trees, K-nearest neighbour, or support vector machine, showing a very high accuracy close to 97%. Therefore, the neural network technique presented could be used as a new tool for the diagnosis of bipolar disorder, considering the possibility of integrating this method into medical software.
Collapse
|
15
|
Sharma S, Chaudhury S. Block Sparse Variational Bayes Regression Using Matrix Variate Distributions With Application to SSVEP Detection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:351-365. [PMID: 33048770 DOI: 10.1109/tnnls.2020.3027773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to the nonsparse representation, the use of compressed sensing (CS) for physiological signals, such as a multichannel electroencephalogram (EEG), has been a challenge. We present a generalized Bayesian CS framework that is capable of handling representations that arise in the spatiotemporal setting. The proposed model utilizes the standard linear Gaussian observation model associated with the hierarchical modeling of data using the matrix-variate Gaussian scale mixture (GSM). It deploys various random and deterministic parameters to incorporate the knowledge of spatial and temporal correlation present in data. By varying distributions over random parameters, a family of generalized hyperbolic matrix variate distributions is derived. For estimation, we rely on variational Bayes (VB) for random parameters and expectation-maximization (EM) for deterministic parameters. Furthermore, the model is compared with recent developments in matrix-variate distribution-based modeling of data, and we briefly discuss its extension to finite mixtures of skewed distributions. Finally, the framework is applied to the steady-state visual evoked potential (SSVEP)-based EEG benchmark data set, and a comparative study is conducted to show its effectiveness for the frequency detection task. One of the crucial features of the proposed model is that it simultaneously processes multichannel signals with low computational cost and time, making it suitable for real-time systems, especially in a resource-constrained environment.
Collapse
|
16
|
PARTICLE RIDER OPTIMIZATION DRIVEN CLASSIFICATION FOR BRAIN-COMPUTER INTERFACE. INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH 2022. [DOI: 10.4018/ijsir.302607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The emerging technology for translating the intention of human into control signals is the Brain–computer interface (BCI). The BCI helps the patients with complete motor dysfunction to interact with the people. In this research, a method for abnormality assessment in humans from the perspective of the BCI was proposed by developing a hybrid optimization algorithm based on Electroencephalography (EEG). The hybrid optimization algorithm, called Particle Rider Optimization Algorithm (PROA) is designed through the incorporation of Particle Swarm Optimization (PSO) and Rider Optimization algorithm (ROA). The pre-processing is done for filtering the noise and removal of artefact. In pre-processing, the noise is removed through the Common Average Referencing (CAR) and Laplacian filters, whereas the artifacts are eliminated by Principle component analysis (PCA).
Collapse
|
17
|
Ali M, A. Abd El-Moghith I, N. El-Derini M, M. Darwish S. Intelligent Machine Learning Based EEG Signal Classification Model. COMPUTERS, MATERIALS & CONTINUA 2022; 71:1821-1835. [DOI: 10.32604/cmc.2022.021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 09/02/2023]
|
18
|
Han Y, Wang B, Luo J, Li L, Li X. A classification method for EEG motor imagery signals based on parallel convolutional neural network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zabcikova M, Koudelkova Z, Jasek R, Navarro JJL. Recent Advances and Current Trends in Brain-Computer Interface (BCI) Research and Their Applications. Int J Dev Neurosci 2021; 82:107-123. [PMID: 34939217 DOI: 10.1002/jdn.10166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/18/2021] [Indexed: 11/06/2022] Open
Abstract
Brain-Computer Interface (BCI) provides direct communication between the brain and an external device. BCI systems have become a trendy field of research in recent years. These systems can be used in a variety of applications to help both disabled and healthy people. Concerning significant BCI progress, we may assume that these systems are not very far from real-world applications. This review has taken into account current trends in BCI research. In this survey, one hundred most cited articles from the WOS database were selected over the last four years. This survey is divided into several sectors. These sectors are Medicine, Communication and Control, Entertainment, and Other BCI applications. The application area, recording method, signal acquisition types, and countries of origin have been identified in each article. This survey provides an overview of the BCI articles published from 2016 to 2020 and their current trends and advances in different application areas.
Collapse
Affiliation(s)
- Martina Zabcikova
- Department of Informatics and Artificial Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Zuzana Koudelkova
- Department of Informatics and Artificial Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Roman Jasek
- Department of Informatics and Artificial Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - José Javier Lorenzo Navarro
- Departamento de Informática y Sistemas, Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
20
|
Khurana V, Gahalawat M, Kumar P, Roy PP, Dogra DP, Scheme E, Soleymani M. A Survey on Neuromarketing Using EEG Signals. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3065200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Brain Activity Recognition Method Based on Attention-Based RNN Mode. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain activity recognition based on electroencephalography (EEG) marks a major research orientation in intelligent medicine, especially in human intention prediction, human–computer control and neurological diagnosis. The literature research mainly focuses on the recognition of single-person binary brain activity, which is limited in the more extensive and complex scenarios. Therefore, brain activity recognition in multiperson and multi-objective scenarios has aroused increasingly more attention. Another challenge is the reduction of recognition accuracy caused by the interface of external noise as well as EEG’s low signal-to-noise ratio. In addition, traditional EEG feature analysis proves to be time-intensive and it relies heavily on mature experience. The paper proposes a novel EEG recognition method to address the above issues. The basic feature of EEG is first analyzed according to the band of EEG. The attention-based RNN model is then adopted to eliminate the interference to achieve the purpose of automatic recognition of the original EEG signal. Finally, we evaluate the proposed method with public and local data sets of EEG and perform lots of tests to investigate how factors affect the results of recognition. As shown by the test results, compared with some typical EEG recognition methods, the proposed method owns better recognition accuracy and suitability in multi-objective task scenarios.
Collapse
|
22
|
A Review of the Role of Machine Learning Techniques towards Brain–Computer Interface Applications. MACHINE LEARNING AND KNOWLEDGE EXTRACTION 2021. [DOI: 10.3390/make3040042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review article provides a deep insight into the Brain–Computer Interface (BCI) and the application of Machine Learning (ML) technology in BCIs. It investigates the various types of research undertaken in this realm and discusses the role played by ML in performing different BCI tasks. It also reviews the ML methods used for mental state detection, mental task categorization, emotion classification, electroencephalogram (EEG) signal classification, event-related potential (ERP) signal classification, motor imagery categorization, and limb movement classification. This work explores the various methods employed in BCI mechanisms for feature extraction, selection, and classification and provides a comparative study of reviewed methods. This paper assists the readers to gain information regarding the developments made in BCI and ML domains and future improvements needed for improving and designing better BCI applications.
Collapse
|
23
|
Identification of Food/Nonfood Visual Stimuli from Event-Related Brain Potentials. Appl Bionics Biomech 2021; 2021:6472586. [PMID: 34603504 PMCID: PMC8486549 DOI: 10.1155/2021/6472586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Although food consumption is one of the most basic human behaviors, the factors underlying nutritional preferences are not yet clear. The use of classification algorithms can clarify the understanding of these factors. This study was aimed at measuring electrophysiological responses to food/nonfood stimuli and applying classification techniques to discriminate the responses using a single-sweep dataset. Twenty-one right-handed male athletes with body mass index (BMI) levels between 18.5% and 25% (mean age: 21.05 ± 2.5) participated in this study voluntarily. The participants were asked to focus on the food and nonfood images that were randomly presented on the monitor without performing any motor task, and EEG data have been collected using a 16-channel amplifier with a sampling rate of 1024 Hz. The SensoMotoric Instruments (SMI) iView XTM RED eye tracking technology was used simultaneously with the EEG to measure the participants' attention to the presented stimuli. Three datasets were generated using the amplitude, time-frequency decomposition, and time-frequency connectivity metrics of P300 and LPP components to separate food and nonfood stimuli. We have implemented k-nearest neighbor (kNN), support vector machine (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Bayesian classifier, decision tree (DT), and Multilayer Perceptron (MLP) classifiers on these datasets. Finally, the response to food-related stimuli in the hunger state is discriminated from nonfood with an accuracy value close to 78% for each dataset. The results obtained in this study motivate us to employ classifier algorithms using the features obtained from single-trial measurements in amplitude and time-frequency space instead of applying more complex ones like connectivity metrics.
Collapse
|
24
|
Xie Y, Xie K, Yang Q, Xie S. Reverberant blind separation of heart and lung sounds using nonnegative matrix factorization and auxiliary function technique. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Gao Z, Dang W, Wang X, Hong X, Hou L, Ma K, Perc M. Complex networks and deep learning for EEG signal analysis. Cogn Neurodyn 2021; 15:369-388. [PMID: 34040666 PMCID: PMC8131466 DOI: 10.1007/s11571-020-09626-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/20/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Electroencephalogram (EEG) signals acquired from brain can provide an effective representation of the human's physiological and pathological states. Up to now, much work has been conducted to study and analyze the EEG signals, aiming at spying the current states or the evolution characteristics of the complex brain system. Considering the complex interactions between different structural and functional brain regions, brain network has received a lot of attention and has made great progress in brain mechanism research. In addition, characterized by autonomous, multi-layer and diversified feature extraction, deep learning has provided an effective and feasible solution for solving complex classification problems in many fields, including brain state research. Both of them show strong ability in EEG signal analysis, but the combination of these two theories to solve the difficult classification problems based on EEG signals is still in its infancy. We here review the application of these two theories in EEG signal research, mainly involving brain-computer interface, neurological disorders and cognitive analysis. Furthermore, we also develop a framework combining recurrence plots and convolutional neural network to achieve fatigue driving recognition. The results demonstrate that complex networks and deep learning can effectively implement functional complementarity for better feature extraction and classification, especially in EEG signal analysis.
Collapse
Affiliation(s)
- Zhongke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Weidong Dang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Xinmin Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Xiaolin Hong
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Linhua Hou
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Kai Ma
- Tencent Youtu Lab, Malata Building, 9998 Shennan Avenue, Shenzhen, 518057 Guangdong Province China
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
26
|
Gu Y, Hua L. A Novel Smart Motor Imagery Intention Human-Computer Interaction Model Using Extreme Learning Machine and EEG Signals. Front Neurosci 2021; 15:685119. [PMID: 34025347 PMCID: PMC8134549 DOI: 10.3389/fnins.2021.685119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/15/2022] Open
Abstract
The brain is the central nervous system that governs human activities. However, in modern society, more and more diseases threaten the health of the brain and nerves and spinal cord, making the human brain unable to conduct normal information interaction with the outside world. The rehabilitation training of the brain-computer interface can promote the nerve repair of the sensorimotor cortex in patients with brain diseases. Therefore, the research of brain-computer interface for motor imaging is of great significance for patients with brain diseases to restore motor function. Due to the characteristics of non-stationary, nonlinear, and individual differences of EEG signals, there are still many difficulties in the analysis and classification of EEG signals at this stage. In this study, the Extreme Learning Machine (ELM) model was used to classify motor-imaging EEG signals, identify the user’s intention, and control external devices. Considering that single-modal features cannot represent the core information, this study uses a fusion feature that combines temporal and spatial features as the final feature data. The fusion features are input to the trained ELM classifier, and the final classification result is obtained. Two sets of BCI competition data in the BCI competition public database are used to verify the validity of the model. The experimental results show that the ELM model has achieved a classification accuracy of 0.7832 in the classification task of Data Sets IIb, which is higher than other comparison algorithms, and shows universal applicability among different subjects. In addition, the average recognition rate of this model in the Data Sets IIIa classification task reaches 0.8347, which has obvious advantages compared with the comparative classification algorithm. The classification effect is smaller than the classification effect obtained by the champion algorithm of the same project, which has certain reference value.
Collapse
Affiliation(s)
- Yi Gu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Lei Hua
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Zheng Q, Wang Y, Heng PA. Multitask Feature Learning Meets Robust Tensor Decomposition for EEG Classification. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:2242-2252. [PMID: 31689229 DOI: 10.1109/tcyb.2019.2946914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, we study a tensor-based multitask learning (MTL) method for classification. Taking into account the fact that in many real-world applications, the given training samples are limited and can be inherently arranged into multidimensional arrays (tensors), we are motivated by the advantages of MTL, where the shared structural information among related tasks can be leveraged to produce better generalization performance. We propose a regularized tensor-based MTL method for joint feature selection and classification. For feature selection, we employ the Fisher discriminant criterion to both select discriminative features and control the within-class nonstationarity. For classification, we take both shared and task-specific structural information into consideration. We decompose the regression tensor for each task into a linear combination of a shared tensor and a task-specific tensor and propose a composite tensor norm. Specifically, we use the scaled latent trace norm for regularizing the shared tensor and the l1 -norm for task-specific tensor. Further, we give a computationally efficient optimization algorithm based on the alternating direction method of multipliers (ADMMs) to tackle the joint learning of discriminative features and multitask classification. The experimental results on real electroencephalography (EEG) datasets demonstrate the superiority of our method over the state-of-the-art techniques.
Collapse
|
28
|
B. LP, S. J, Pragatheeswaran JK, D. S, N. P. Scattering convolutional network based predictive model for cognitive activity of brain using empirical wavelet decomposition. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zang S, Cheng Y, Wang X, Yan Y. Transfer Extreme Learning Machine with Output Weight Alignment. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:6627765. [PMID: 33628212 PMCID: PMC7895561 DOI: 10.1155/2021/6627765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
Extreme Learning Machine (ELM) as a fast and efficient neural network model in pattern recognition and machine learning will decline when the labeled training sample is insufficient. Transfer learning helps the target task to learn a reliable model by using plentiful labeled samples from the different but relevant domain. In this paper, we propose a supervised Extreme Learning Machine with knowledge transferability, called Transfer Extreme Learning Machine with Output Weight Alignment (TELM-OWA). Firstly, it reduces the distribution difference between domains by aligning the output weight matrix of the ELM trained by the labeled samples from the source and target domains. Secondly, the approximation between the interdomain ELM output weight matrix is added to the objective function to further realize the cross-domain transfer of knowledge. Thirdly, we consider the objective function as the least square problem and transform it into a standard ELM model to be efficiently solved. Finally, the effectiveness of the proposed algorithm is verified by classification experiments on 16 sets of image datasets and 6 sets of text datasets, and the result demonstrates the competitive performance of our method with respect to other ELM models and transfer learning approach.
Collapse
Affiliation(s)
- Shaofei Zang
- Department of Information Engineering College, Henan University of Science and Technology, Luoyang 471000, China
| | - Yuhu Cheng
- Department of Information and Control Engineering College, China University of Mining and Technology, Xuzhou 221116, China
| | - Xuesong Wang
- Department of Information and Control Engineering College, China University of Mining and Technology, Xuzhou 221116, China
| | - Yongyi Yan
- Department of Information Engineering College, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
30
|
Jiao Y, Zhou T, Yao L, Zhou G, Wang X, Zhang Y. Multi-View Multi-Scale Optimization of Feature Representation for EEG Classification Improvement. IEEE Trans Neural Syst Rehabil Eng 2021; 28:2589-2597. [PMID: 33245696 DOI: 10.1109/tnsre.2020.3040984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Effectively extracting common space pattern (CSP) features from motor imagery (MI) EEG signals is often highly dependent on the filter band selection. At the same time, optimizing the EEG channel combinations is another key issue that substantially affects the SMR feature representations. Although numerous algorithms have been developed to find channels that record important characteristics of MI, most of them select channels in a cumbersome way with low computational efficiency, thereby limiting the practicality of MI-based BCI systems. In this study, we propose the multi-scale optimization (MSO) of spatial patterns, optimizing filter bands over multiple channel sets within CSPs to further improve the performance of MI-based BCI. Specifically, several channel subsets are first heuristically predefined, and then raw EEG data specific to each of these subsets bandpass-filtered at the overlap between a set of filter bands. Further, instead of solving learning problems for each channel subset independently, we propose a multi-view learning based sparse optimization to jointly extract robust CSP features with L2,1 -norm regularization, aiming to capture the shared salient information across multiple related spatial patterns for enhanced classification performance. A support vector machine (SVM) classifier is then trained on these optimized EEG features for accurate recognition of MI tasks. Experimental results on three public EEG datasets validate the effectiveness of MSO compared to several other competing methods and their variants. These superior experimental results demonstrate that the proposed MSO method has promising potential in MI-based BCIs.
Collapse
|
31
|
Li C, Yang H, Cheng L. Fugl-Meyer hand motor imagination recognition for brain–computer interfaces using only fNIRS. COMPLEX INTELL SYST 2021. [DOI: 10.1007/s40747-020-00266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractAs a relatively new physiological signal of brain, functional near-infrared spectroscopy (fNIRS) is being used more and more in brain–computer interface field, especially in the task of motor imagery. However, the classification accuracy based on this signal is relatively low. To improve the accuracy of classification, this paper proposes a new experimental paradigm and only uses fNIRS signals to complete the classification task of six subjects. Notably, the experiment is carried out in a non-laboratory environment, and movements of motion imagination are properly designed. And when the subjects are imagining the motions, they are also subvocalizing the movements to prevent distraction. Therefore, according to the motor area theory of the cerebral cortex, the positions of the fNIRS probes have been slightly adjusted compared with other methods. Next, the signals are classified by nine classification methods, and the different features and classification methods are compared. The results show that under this new experimental paradigm, the classification accuracy of 89.12% and 88.47% can be achieved using the support vector machine method and the random forest method, respectively, which shows that the paradigm is effective. Finally, by selecting five channels with the largest variance after empirical mode decomposition of the original signal, similar classification results can be achieved.
Collapse
|
32
|
Luo J, Wong CM, Vong CM. Multinomial Bayesian extreme learning machine for sparse and accurate classification model. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.09.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Gong S, Xing K, Cichocki A, Li J. Deep Learning in EEG: Advance of the Last Ten-Year Critical Period. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3079712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Franklin Alex Joseph A, Govindaraju C. Minimizing electrodes for effective brain computer interface. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Nann M, Peekhaus N, Angerhöfer C, Soekadar SR. Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural-Machine Interaction. Front Hum Neurosci 2020; 14:580105. [PMID: 33362490 PMCID: PMC7756108 DOI: 10.3389/fnhum.2020.580105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical spinal cord injuries (SCIs) often lead to loss of motor function in both hands and legs, limiting autonomy and quality of life. While it was shown that unilateral hand function can be restored after SCI using a hybrid electroencephalography/electrooculography (EEG/EOG) brain/neural hand exoskeleton (B/NHE), it remained unclear whether such hybrid paradigm also could be used for operating two hand exoskeletons, e.g., in the context of bimanual tasks such as eating with fork and knife. To test whether EEG/EOG signals allow for fluent and reliable as well as safe and user-friendly bilateral B/NHE control, eight healthy participants (six females, mean age 24.1 ± 3.2 years) as well as four chronic tetraplegics (four males, mean age 51.8 ± 15.2 years) performed a complex sequence of EEG-controlled bilateral grasping and EOG-controlled releasing motions of two exoskeletons visually presented on a screen. A novel EOG command performed by prolonged horizontal eye movements (>1 s) to the left or right was introduced as a reliable switch to activate either the left or right exoskeleton. Fluent EEG control was defined as average “time to initialize” (TTI) grasping motions below 3 s. Reliable EEG control was assumed when classification accuracy exceeded 80%. Safety was defined as “time to stop” (TTS) all unintended grasping motions within 2 s. After the experiment, tetraplegics were asked to rate the user-friendliness of bilateral B/NHE control using Likert scales. Average TTI and accuracy of EEG-controlled operations ranged at 2.14 ± 0.66 s and 85.89 ± 15.81% across healthy participants and at 1.90 ± 0.97 s and 81.25 ± 16.99% across tetraplegics. Except for one tetraplegic, all participants met the safety requirements. With 88 ± 11% of the maximum achievable score, tetraplegics rated the control paradigm as user-friendly and reliable. These results suggest that hybrid EEG/EOG B/NHE control of two assistive devices is feasible and safe, paving the way to test this paradigm in larger clinical trials performing bimanual tasks in everyday life environments.
Collapse
Affiliation(s)
- Marius Nann
- Clinical Neurotechnology Lab, Charité - University Medicine Berlin, Berlin, Germany.,Applied Neurotechnology Lab, University Hospital Tübingen, Tübingen, Germany
| | - Niels Peekhaus
- Clinical Neurotechnology Lab, Charité - University Medicine Berlin, Berlin, Germany.,Applied Neurotechnology Lab, University Hospital Tübingen, Tübingen, Germany
| | - Cornelius Angerhöfer
- Clinical Neurotechnology Lab, Charité - University Medicine Berlin, Berlin, Germany.,Applied Neurotechnology Lab, University Hospital Tübingen, Tübingen, Germany
| | - Surjo R Soekadar
- Clinical Neurotechnology Lab, Charité - University Medicine Berlin, Berlin, Germany.,Applied Neurotechnology Lab, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Tobore I, Kandwal A, Li J, Yan Y, Omisore OM, Enitan E, Sinan L, Yuhang L, Wang L, Nie Z. Towards adequate prediction of prediabetes using spatiotemporal ECG and EEG feature analysis and weight-based multi-model approach. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
García-Martínez B, Fernández-Caballero A, Zunino L, Martínez-Rodrigo A. Recognition of Emotional States from EEG Signals with Nonlinear Regularity- and Predictability-Based Entropy Metrics. Cognit Comput 2020. [DOI: 10.1007/s12559-020-09789-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Wankhade MM, Chorage SS. An empirical survey of electroencephalography-based brain-computer interfaces. BIO-ALGORITHMS AND MED-SYSTEMS 2020. [DOI: 10.1515/bams-2019-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
The Electroencephalogram (EEG) signal is modified using the Motor Imagery (MI) and it is utilized for patients with high motor impairments. Hence, the direct relationship between the computer and brain is termed as an EEG-based brain-computer interface (BCI). The objective of this survey is to presents an analysis of the existing distinct BCIs based on EEG.
Methods
This survey provides a detailed review of more than 60 research papers presenting the BCI-based EEG, like motor imagery-based techniques, spatial filtering-based techniques, Steady-State Visual Evoked Potential (SSVEP)-based techniques, machine learning-based techniques, Event-Related Potential (ERP)-based techniques, and online EEG-based techniques. Subsequently, the research gaps and issues of several EEG-based BCI systems are adopted to help the researchers for better future scope.
Results
An elaborative analyses as well as discussion have been provided by concerning the parameters, like evaluation metrics, year of publication, accuracy, implementation tool, and utilized datasets obtained by various techniques.
Conclusions
This survey paper exposes research topics on BCI-based EEG, which helps the researchers and scholars, who are interested in this domain.
Collapse
Affiliation(s)
- Megha M. Wankhade
- Dept. of Electronics &Telecommunication Engineering , AISSMS Institute of Information Technology , Pune -411001, India
| | - Suvarna S. Chorage
- Dept. of Electronics & Telecommunication Engineering , Bharati Vidyapeeth’s College of Engineering for Women , Pune 411043, India
| |
Collapse
|
39
|
A new intelligent pattern classifier based on deep-thinking. Neural Comput Appl 2020. [DOI: 10.1007/s00521-019-04479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Hang W, Feng W, Liang S, Wang Q, Liu X, Choi KS. Deep stacked support matrix machine based representation learning for motor imagery EEG classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 193:105466. [PMID: 32283388 DOI: 10.1016/j.cmpb.2020.105466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/18/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Electroencephalograph (EEG) classification is an important technology that can establish a mapping relationship between EEG features and cognitive tasks. Emerging matrix classifiers have been successfully applied to motor imagery (MI) EEG classification, but they belong to shallow classifiers, making powerful stacked generalization principle not exploited for automatically learning deep EEG features. To learn the high-level representation and abstraction, we proposed a novel deep stacked support matrix machine (DSSMM) to improve the performance of existing shallow matrix classifiers in EEG classification. METHODS The main idea of our framework is founded on the stacked generalization principle, where support matrix machine (SMM) is introduced as the basic building block of deep stacked network. The weak predictions of all previous layers obtained via SMM are randomly projected to help move apart the manifold of the original input EEG feature, and then the newly generated features are fed into the next layer of DSSMM. The framework only involves an efficient feed-forward rather than parameter fine-tuning with backpropagation, each layer of which is a convex optimization problem, thus simplifying the objective function solving process. RESULTS Extensive experiments on three public EEG datasets and a self-collected EEG dataset are conducted. Experimental results demonstrate that our DSSMM outperforms the available state-of-the-art methods. CONCLUSION The proposed DSSMM inherits the characteristic of matrix classifiers that can learn the structural information of data as well as the powerful capability of deep representation learning, which makes it adapted to classify complex matrix-form EEG data.
Collapse
Affiliation(s)
- Wenlong Hang
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China; CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Wei Feng
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Shuang Liang
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210093, China.
| | - Qiong Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Xuejun Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Kup-Sze Choi
- School of Nursing, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
41
|
Zhang S, Zhu Z, Zhang B, Feng B, Yu T, Li Z. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification. SENSORS 2020; 20:s20174749. [PMID: 32842635 PMCID: PMC7506901 DOI: 10.3390/s20174749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
The common spatial pattern (CSP) is a very effective feature extraction method in motor imagery based brain computer interface (BCI), but its performance depends on the selection of the optimal frequency band. Although a lot of research works have been proposed to improve CSP, most of these works have the problems of large computation costs and long feature extraction time. To this end, three new feature extraction methods based on CSP and a new feature selection method based on non-convex log regularization are proposed in this paper. Firstly, EEG signals are spatially filtered by CSP, and then three new feature extraction methods are proposed. We called them CSP-wavelet, CSP-WPD and CSP-FB, respectively. For CSP-Wavelet and CSP-WPD, the discrete wavelet transform (DWT) or wavelet packet decomposition (WPD) is used to decompose the spatially filtered signals, and then the energy and standard deviation of the wavelet coefficients are extracted as features. For CSP-FB, the spatially filtered signals are filtered into multiple bands by a filter bank (FB), and then the logarithm of variances of each band are extracted as features. Secondly, a sparse optimization method regularized with a non-convex log function is proposed for the feature selection, which we called LOG, and an optimization algorithm for LOG is given. Finally, ensemble learning is used for secondary feature selection and classification model construction. Combing feature extraction and feature selection methods, a total of three new EEG decoding methods are obtained, namely CSP-Wavelet+LOG, CSP-WPD+LOG, and CSP-FB+LOG. Four public motor imagery datasets are used to verify the performance of the proposed methods. Compared to existing methods, the proposed methods achieved the highest average classification accuracy of 88.86, 83.40, 81.53, and 80.83 in datasets 1–4, respectively. The feature extraction time of CSP-FB is the shortest. The experimental results show that the proposed methods can effectively improve the classification accuracy and reduce the feature extraction time. With comprehensive consideration of classification accuracy and feature extraction time, CSP-FB+LOG has the best performance and can be used for the real-time BCI system.
Collapse
Affiliation(s)
- Shaorong Zhang
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; (S.Z.); (B.Z.); (Z.L.)
- School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, China;
| | - Zhibin Zhu
- School of Mathematics and Computational Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin 541004, China
- Correspondence:
| | - Benxin Zhang
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; (S.Z.); (B.Z.); (Z.L.)
| | - Bao Feng
- School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, China;
| | - Tianyou Yu
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510000, China;
| | - Zhi Li
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China; (S.Z.); (B.Z.); (Z.L.)
- School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, China;
| |
Collapse
|
42
|
Dong E, Zhou K, Tong J, Du S. A novel hybrid kernel function relevance vector machine for multi-task motor imagery EEG classification. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Anoop V, Bipin PR. Super-Resolution Based Automatic Diagnosis of Retinal Disease Detection for Clinical Applications. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10292-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Zhou Z, Chen X, Zhang Y, Hu D, Qiao L, Yu R, Yap P, Pan G, Zhang H, Shen D. A toolbox for brain network construction and classification (BrainNetClass). Hum Brain Mapp 2020; 41:2808-2826. [PMID: 32163221 PMCID: PMC7294070 DOI: 10.1002/hbm.24979] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Brain functional network has been increasingly used in understanding brain functions and diseases. While many network construction methods have been proposed, the progress in the field still largely relies on static pairwise Pearson's correlation-based functional network and group-level comparisons. We introduce a "Brain Network Construction and Classification (BrainNetClass)" toolbox to promote more advanced brain network construction methods to the filed, including some state-of-the-art methods that were recently developed to capture complex and high-order interactions among brain regions. The toolbox also integrates a well-accepted and rigorous classification framework based on brain connectome features toward individualized disease diagnosis in a hope that the advanced network modeling could boost the subsequent classification. BrainNetClass is a MATLAB-based, open-source, cross-platform toolbox with both graphical user-friendly interfaces and a command line mode targeting cognitive neuroscientists and clinicians for promoting reliability, reproducibility, and interpretability of connectome-based, computer-aided diagnosis. It generates abundant classification-related results from network presentations to contributing features that have been largely ignored by most studies to grant users the ability of evaluating the disease diagnostic model and its robustness and generalizability. We demonstrate the effectiveness of the toolbox on real resting-state functional MRI datasets. BrainNetClass (v1.0) is available at https://github.com/zzstefan/BrainNetClass.
Collapse
Affiliation(s)
- Zhen Zhou
- College of Computer Science and TechnologyZhejiang UniversityHangzhouChina
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Xiaobo Chen
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Automotive Engineering Research InstituteJiangsu UniversityZhenjiangChina
| | - Yu Zhang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Psychiatry and Behavior SciencesStanford UniversityStanfordCaliforniaUSA
| | - Dan Hu
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Lishan Qiao
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- School of Mathematics ScienceLiaocheng UniversityLiaochengChina
| | - Renping Yu
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- School of Electric EngineeringZhengzhou UniversityZhengzhouChina
| | - Pew‐Thian Yap
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gang Pan
- College of Computer Science and TechnologyZhejiang UniversityHangzhouChina
| | - Han Zhang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Dinggang Shen
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
45
|
Belkacem AN, Jamil N, Palmer JA, Ouhbi S, Chen C. Brain Computer Interfaces for Improving the Quality of Life of Older Adults and Elderly Patients. Front Neurosci 2020; 14:692. [PMID: 32694979 PMCID: PMC7339951 DOI: 10.3389/fnins.2020.00692] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/08/2020] [Indexed: 02/01/2023] Open
Abstract
All people experience aging, and the related physical and health changes, including changes in memory and brain function. These changes may become debilitating leading to an increase in dependence as people get older. Many external aids and tools have been developed to allow older adults and elderly patients to continue to live normal and comfortable lives. This mini-review describes some of the recent studies on cognitive decline and motor control impairment with the goal of advancing non-invasive brain computer interface (BCI) technologies to improve health and wellness of older adults and elderly patients. First, we describe the state of the art in cognitive prosthetics for psychiatric diseases. Then, we describe the state of the art of possible assistive BCI applications for controlling an exoskeleton, a wheelchair and smart home for elderly people with motor control impairments. The basic age-related brain and body changes, the effects of age on cognitive and motor abilities, and several BCI paradigms with typical tasks and outcomes are thoroughly described. We also discuss likely future trends and technologies to assist healthy older adults and elderly patients using innovative BCI applications with minimal technical oversight.
Collapse
Affiliation(s)
- Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nuraini Jamil
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jason A. Palmer
- Department of Neurological Diagnosis and Restoration, Osaka University, Suita, Japan
| | - Sofia Ouhbi
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chao Chen
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
46
|
Pan Y, Tsang IW, Singh AK, Lin CT, Sugiyama M. Stochastic Multichannel Ranking with Brain Dynamics Preferences. Neural Comput 2020; 32:1499-1530. [PMID: 32521213 DOI: 10.1162/neco_a_01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A driver's cognitive state of mental fatigue significantly affects his or her driving performance and more important, public safety. Previous studies have leveraged reaction time (RT) as the metric for mental fatigue and aim at estimating the exact value of RT using electroencephalogram (EEG) signals within a regression model. However, due to the easily corrupted and also nonsmooth properties of RTs during data collection, methods focusing on predicting the exact value of a noisy measurement, RT generally suffer from poor generalization performance. Considering that human RT is the reflection of brain dynamics preference (BDP) rather than a single regression output of EEG signals, we propose a novel channel-reliability-aware ranking (CArank) model for the multichannel ranking problem. CArank learns from BDPs using EEG data robustly and aims at preserving the ordering corresponding to RTs. In particular, we introduce a transition matrix to characterize the reliability of each channel used in the EEG data, which helps in learning with BDPs only from informative EEG channels. To handle large-scale EEG signals, we propose a stochastic-generalized expectation maximum (SGEM) algorithm to update CArank in an online fashion. Comprehensive empirical analysis on EEG signals from 40 participants shows that our CArank achieves substantial improvements in reliability while simultaneously detecting noisy or less informative EEG channels.
Collapse
Affiliation(s)
- Yuangang Pan
- Centre for Artificial Intelligence, University of Technology Sydney, Sydney 2007, Australia
| | - Ivor W Tsang
- Centre for Artificial Intelligence, University of Technology Sydney, Sydney 2007, Australia
| | - Avinash K Singh
- Centre for Artificial Intelligence, University of Technology Sydney, Sydney 2007, Australia
| | - Chin-Teng Lin
- Centre for Artificial Intelligence, University of Technology Sydney, Sydney 2007, Australia
| | - Masashi Sugiyama
- Center for Advanced Intelligence Project, RIKEN, Tokyo 103-0027, and Graduate School of Frontier Sciences, University of Tokyo, Tokyo 2777-8563, Japan
| |
Collapse
|
47
|
Chakrabarti S, Swetapadma A, Ranjan A, Pattnaik PK. Time domain implementation of pediatric epileptic seizure detection system for enhancing the performance of detection and easy monitoring of pediatric patients. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Browarczyk J, Kurowski A, Kostek B. Analyzing the Effectiveness of the Brain-Computer Interface for Task Discerning Based on Machine Learning. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2403. [PMID: 32340276 PMCID: PMC7219492 DOI: 10.3390/s20082403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
The aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was performed on obtained signals. Welch's method, autoregressive modeling, and discrete wavelet transform were used for feature extraction. Principal component analysis (PCA) was performed in order to reduce the dimensionality of feature vectors. k-Nearest Neighbors (kNN), Support Vector Machines (SVM), and Neural Networks (NN) were employed for classification. Precision, recall, F1 score, as well as a discussion based on statistical analysis, were shown. The paper also contains code utilized in preprocessing and the main part of experiments.
Collapse
Affiliation(s)
- Jakub Browarczyk
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Adam Kurowski
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
- Audio Acoustics Laboratory, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Bozena Kostek
- Audio Acoustics Laboratory, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
49
|
Zhou T, Zhang C, Gong C, Bhaskar H, Yang J. Multiview Latent Space Learning With Feature Redundancy Minimization. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:1655-1668. [PMID: 30571651 DOI: 10.1109/tcyb.2018.2883673] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multiview learning has received extensive research interest and has demonstrated promising results in recent years. Despite the progress made, there are two significant challenges within multiview learning. First, some of the existing methods directly use original features to reconstruct data points without considering the issue of feature redundancy. Second, existing methods cannot fully exploit the complementary information across multiple views and meanwhile preserve the view-specific properties; therefore, the degraded learning performance will be generated. To address the above issues, we propose a novel multiview latent space learning framework with feature redundancy minimization. We aim to learn a latent space to mitigate the feature redundancy and use the learned representation to reconstruct every original data point. More specifically, we first project the original features from multiple views onto a latent space, and then learn a shared dictionary and view-specific dictionaries to, respectively, exploit the correlations across multiple views as well as preserve the view-specific properties. Furthermore, the Hilbert-Schmidt independence criterion is adopted as a diversity constraint to explore the complementarity of multiview representations, which further ensures the diversity from multiple views and preserves the local structure of the data in each view. Experimental results on six public datasets have demonstrated the effectiveness of our multiview learning approach against other state-of-the-art methods.
Collapse
|
50
|
Roy PP, Kumar P, Chang V. A hybrid classifier combination for home automation using EEG signals. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-04804-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|