1
|
Yang N, Peng H, Wang J, Lu X, Ramírez-de-Arellano A, Wang X, Yu Y. Model design and exponential state estimation for discrete-time delayed memristive spiking neural P systems. Neural Netw 2025; 181:106801. [PMID: 39442456 DOI: 10.1016/j.neunet.2024.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
This paper investigates the exponential state estimation of the discrete-time memristive spiking neural P system (MSNPS). The spiking neural P system (SNPS) offers algorithmic support for neural morphology computation and AI chips, boasting advantages such as high performance and efficiency. As a new type of information device, memristors have efficient computing characteristics that integrate memory and computation, and can serve as synapses in SNPS. Therefore, to leverage the combined benefits of SNPS and memristors, this study introduces an innovative MSNPS circuit design, where memristors substitute resistors in the SNPS framework. Meanwhile, MSNPS mathematical model is constructed based on circuit model. In order to be more practical, the time delays in the system are analyzed in addition to the discretization of the continuous MSNPS. Moreover, some sufficient conditions for exponential state estimation are established by utilizing a Lyapunov functional to MSNPS. Finally, a numerical simulation example is constructed to validate the main findings.
Collapse
Affiliation(s)
- Nijing Yang
- School of Computer and Software Engineering, Xihua University, Chengdu, 610039, China.
| | - Hong Peng
- School of Computer and Software Engineering, Xihua University, Chengdu, 610039, China
| | - Jun Wang
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, 610039, China
| | - Xiang Lu
- Ascend Computing Product Department, Huawei Technologies Co Ltd, Chengdu, 610041, China
| | | | - Xiangxiang Wang
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yongbin Yu
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
2
|
Tu K, Xue Y, Zhang X. Observer-based resilient dissipativity control for discrete-time memristor-based neural networks with unbounded or bounded time-varying delays. Neural Netw 2024; 175:106279. [PMID: 38608536 DOI: 10.1016/j.neunet.2024.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
This work focuses on the issue of observer-based resilient dissipativity control of discrete-time memristor-based neural networks (DTMBNNs) with unbounded or bounded time-varying delays. Firstly, the Luenberger observer is designed, and additionally based on the observed states, the observer-based resilient controller is proposed. An augmented system is presented by considering both the error system and the DTMBNNs with the controller. Secondly, a novel sufficient extended exponential dissipativity condition is obtained for the augmented system with unbounded time-varying delays by proposing a system solutions-based estimation approach. This method is based on system solutions and without constructing any Lyapunov-Krasovskii functionals (LKF), thereby reducing the complexity of theoretical derivation and computational workload. In addition, an algorithm is proposed to solve the nonlinear inequalities in the sufficient condition. Thirdly, the sufficient extended exponential dissipativity condition for the augmented system with bounded time-varying delays is also obtained. Finally, the effectiveness of the theoretical results is illustrated through two simulation examples.
Collapse
Affiliation(s)
- Kairong Tu
- School of Mathematical Science, Heilongjiang University, Harbin 150080, PR China.
| | - Yu Xue
- School of Mathematical Science, Heilongjiang University, Harbin 150080, PR China; Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems, Heilongjiang University, Harbin 150080, PR China.
| | - Xian Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, PR China; Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
3
|
Lin A, Cheng J, Park JH, Yan H, Qi W. Fault Detection Filtering of Nonhomogeneous Markov Switching Memristive Neural Networks with Output Quantization. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
4
|
Cheng J, Lin A, Cao J, Qiu J, Qi W. Protocol-based fault detection for discrete-time memristive neural networks with quantization effect. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Xiao J, Zhong S, Wen S. Unified Analysis on the Global Dissipativity and Stability of Fractional-Order Multidimension-Valued Memristive Neural Networks With Time Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5656-5665. [PMID: 33950847 DOI: 10.1109/tnnls.2021.3071183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unified criteria are analyzed on the global dissipativity and stability for the delayed fractional-order systems of multidimension-valued memristive neural networks (FSMVMNNs) in this article. First, based on the comprehensive knowledge about multidimensional algebra, fractional derivatives, and nonsmooth analysis, we establish the unified model for the studied FSMVMNNs in order to propose a more uniform method to analyze the dynamic behaviors of multidimensional neural networks. Then, by mainly applying the Lyapunov method, employing several new lemmas, and solving some mathematical difficulties, without any separation, we acquire the unified and concise criteria. The derived criteria have many advantages in a smaller calculation, lower conservatism, more diversity, and higher flexibility. Finally, we provide two numerical examples to express the availability and improvements of the theoretical results.
Collapse
|
6
|
Cheng J, Liang L, Yan H, Cao J, Tang S, Shi K. Proportional-Integral Observer-Based State Estimation for Markov Memristive Neural Networks With Sensor Saturations. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; PP:405-416. [PMID: 35588411 DOI: 10.1109/tnnls.2022.3174880] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article investigates the resilient proportional-integral observer (PIO) problem for Markov switching memristive neural networks (MSMNNs) with randomly occurring sensor saturation within a finite-time interval. The Markov switching of memristive neural networks is regulated by a higher level deterministic switching signal, whose transition probabilities are piecewise time-varying and can be depicted by the average dwell-time strategy. Meanwhile, a Bernoulli stochastic process associated with an uncertain packet arriving rate is adopted to describe the randomly occurring sensor saturation. The aim is to design a resilient PIO such that the augmented dynamic has the property of stochastic finite-time boundedness while meeting the desired performance index. By applying the Lyapunov method and the average dwell-time scheme, sufficient criteria are established for MSMNNs, and a unified design method is presented for the existence of the PIO. Lastly, the attained theoretical results are validated via a numerical simulation.
Collapse
|
7
|
Lin WJ, He Y, Zhang CK, Wang L, Wu M. Event-Triggered Fault Detection Filter Design for Discrete-Time Memristive Neural Networks With Time Delays. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:3359-3369. [PMID: 32784148 DOI: 10.1109/tcyb.2020.3011527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, the fault detection (FD) filter design problem is addressed for discrete-time memristive neural networks with time delays. When constructing the system model, an event-triggered communication mechanism is investigated to reduce the communication burden and a fault weighting matrix function is adopted to improve the accuracy of the FD filter. Then, based on the Lyapunov functional theory, an augmented Lyapunov functional is constructed. By utilizing the summation inequality approach and the improved reciprocally convex combination method, an FD filter that guarantees the asymptotic stability and the prescribed H∞ performance level of the residual system is designed. Finally, numerical simulations are provided to illustrate the effectiveness of the presented results.
Collapse
|
8
|
Li R, Cao J. Exponential H ∞ State Estimation for Memristive Neural Networks: Vector Optimization Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:5061-5071. [PMID: 33021949 DOI: 10.1109/tnnls.2020.3026707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article presents the theoretical results on the H∞ state estimation problem for a class of discrete-time memristive neural networks. By utilizing a Lyapunov-Krasovskii functional, sufficient conditions are derived to guarantee that the error system is exponentially mean-square stable; subsequently, the prespecified H∞ disturbance rejection attenuation level is also guaranteed. It should be noted that the vector optimization method is employed to find the maximum bound of function and the minimum disturbance turning simultaneously. Finally, the corresponding simulation results are included to show the effectiveness of the proposed methodology.
Collapse
|
9
|
Xiao Q, Huang T. Quasisynchronization of Discrete-Time Inertial Neural Networks With Parameter Mismatches and Delays. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:2290-2295. [PMID: 31503000 DOI: 10.1109/tcyb.2019.2937526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contrary to many existing works based on the continuous-time inertial neural network, this article considers the quasisynchronization issue for the discrete-time inertial neural network. To obtain the main results, we adopt the generalized matrix-measure concept. A condition ensuring the quasisynchronization is attained at first. To make the result less conservative, further analysis based on the generalized matrix measure is proceeded. An example is given to demonstrate the validity and effectiveness of the main results.
Collapse
|
10
|
Ding S, Wang Z, Rong N. Intermittent Control for Quasisynchronization of Delayed Discrete-Time Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:862-873. [PMID: 32697731 DOI: 10.1109/tcyb.2020.3004894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article visits the intermittent quasisynchronization control of delayed discrete-time neural networks (DNNs). First, an event-dependent intermittent mechanism is originally designed, which is described by the Lyapunov function and three non-negative real regions. The distinctive feature is that the controller starts to work only when the trajectory of the Lyapunov function goes into the presupposed work region. The proposed method fundamentally changes the principle of the existing intermittent control schemes. Under the proposed framework of the intermittent mechanism, the work/rest time of the controller is aperiodic, unpredictable, and initial value dependent. Second, several succinct sufficient conditions in terms of linear matrix inequalities are developed to achieve the quasisynchronization of the considered DNNs. A simple optimization algorithm is established to compute the control gains and the Lyapunov matrices such that synchronization error is stabilized to the smallest convergence region. Finally, two simulation examples are provided to demonstrate the feasibility of the designed intermittent mechanism.
Collapse
|
11
|
Nagamani G, Rajan GS, Zhu Q. Exponential State Estimation for Memristor-Based Discrete-Time BAM Neural Networks With Additive Delay Components. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4281-4292. [PMID: 30908249 DOI: 10.1109/tcyb.2019.2902864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper focuses on the dynamical behavior for a class of memristor-based bidirectional associative memory neural networks (BAMNNs) with additive time-varying delays in discrete-time case. The necessity of the proposed problem is to design a proper state estimator such that the dynamics of the corresponding estimation error is exponentially stable with a prescribed decay rate. By constructing an appropriate Lyapunov-Krasovskii functional (LKF) and utilizing Cauchy-Schwartz-based summation inequality, the delay-dependent sufficient conditions for the existence of the desired estimator are derived in the absence of uncertainties which are further extended to available uncertain parameters of the prescribed memristor-based BAMNNs in terms of linear matrix inequalities (LMIs). By solving the proposed LMI conditions the estimation gain matrices are obtained. Finally, two numerical examples are presented to illustrate the effectiveness of the proposed results.
Collapse
|
12
|
Li R, Gao X, Cao J. Exponential State Estimation for Stochastically Disturbed Discrete-Time Memristive Neural Networks: Multiobjective Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:3168-3177. [PMID: 31562107 DOI: 10.1109/tnnls.2019.2938774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The state estimation of the discrete-time memristive model is studied in this article. By applying the stochastic analysis technique, sufficient formulas are established to ensure the exponentially mean-square stability of the error model. Moreover, the derived control gain matrix can be calculated via the linear matrix inequality (LMI). It should be mentioned that, by extending the derived conclusion to a multiobjective optimization problem, the maximum bound of the active function and the minimum bound of the disturbance attenuation are derived. The corresponding simulation figures are provided in the end.
Collapse
|
13
|
Saravanakumar R, Mukaidani H, Muthukumar P. Extended dissipative state estimation of delayed stochastic neural networks. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.03.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Li W, Xiao L, Liao B. A Finite-Time Convergent and Noise-Rejection Recurrent Neural Network and Its Discretization for Dynamic Nonlinear Equations Solving. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:3195-3207. [PMID: 31021811 DOI: 10.1109/tcyb.2019.2906263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The so-called zeroing neural network (ZNN) is an effective recurrent neural network for solving dynamic problems including the dynamic nonlinear equations. There exist numerous unperturbed ZNN models that can converge to the theoretical solution of solvable nonlinear equations in infinity long or finite time. However, when these ZNN models are perturbed by external disturbances, the convergence performance would be dramatically deteriorated. To overcome this issue, this paper for the first time proposes a finite-time convergent ZNN with the noise-rejection capability to endure disturbances and solve dynamic nonlinear equations in finite time. In theory, the finite-time convergence and noise-rejection properties of the finite-time convergent and noise-rejection ZNN (FTNRZNN) are rigorously proved. For potential digital hardware realization, the discrete form of the FTNRZNN model is established based on a recently developed five-step finite difference rule to guarantee a high computational accuracy. The numerical results demonstrate that the discrete-time FTNRZNN can reject constant external noises. When perturbed by dynamic bounded or unbounded linear noises, the discrete-time FTNRZNN achieves the smallest steady-state errors in comparison with those generated by other discrete-time ZNN models that have no or limited ability to handle these noises. Discrete models of the FTNRZNN and the other ZNNs are comparatively applied to redundancy resolution of a robotic arm with superior positioning accuracy of the FTNRZNN verified.
Collapse
|
15
|
Passivity Analysis of Non-autonomous Discrete-Time Inertial Neural Networks with Time-Varying Delays. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10235-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Yue CX, Wang L, Hu X, Tang HA, Duan S. Pinning control for passivity and synchronization of coupled memristive reaction–diffusion neural networks with time-varying delay. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.09.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Cao Y, Cao Y, Guo Z, Huang T, Wen S. Global exponential synchronization of delayed memristive neural networks with reaction–diffusion terms. Neural Netw 2020; 123:70-81. [DOI: 10.1016/j.neunet.2019.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
|
18
|
Wang X, Park JH, Zhong S, Yang H. A Switched Operation Approach to Sampled-Data Control Stabilization of Fuzzy Memristive Neural Networks With Time-Varying Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:891-900. [PMID: 31059457 DOI: 10.1109/tnnls.2019.2910574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper investigates the issue of sampled-data stabilization for Takagi-Sugeno fuzzy memristive neural networks (FMNNs) with time-varying delay. First, the concerned FMNNs are transformed into the tractable fuzzy NNs based on the excitatory and inhibitory of memristive synaptic weights using a new convex combination technique. Meanwhile, a switched fuzzy sampled-data controller is employed for the first time to tackle stability problems related to FMNNs. Then, the novel stabilization criteria of the FMNNs are established using the fuzzy membership functions (FMFs)-dependent Lyapunov-Krasovskii functional. This sufficiently utilizes information from not only the delayed state and the actual sampling pattern but also the FMFs. Two simulation examples are presented to demonstrate the feasibility and validity of the proposed method.
Collapse
|
19
|
|
20
|
Liu H, Wang Z, Shen B, Dong H. Delay-Distribution-Dependent H ∞ State Estimation for Discrete-Time Memristive Neural Networks With Mixed Time-Delays and Fading Measurements. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:440-451. [PMID: 30207975 DOI: 10.1109/tcyb.2018.2862914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper addresses the H ∞ state estimation issue for a sort of memristive neural networks in the discrete-time setting under randomly occurring mixed time-delays and fading measurements. The main purpose of the addressed issue is to propose a state estimator design algorithm that ensures the error dynamics of the state estimation to be stochastically stable with a prespecified H ∞ disturbance attenuation index. We put forward certain switching functions to account for the discrete-time yet state-dependent characteristics of the memristive connection weights. By resorting to the robust analysis theory and the Lyapunov-functional analysis theory, we derive some sufficient conditions to guarantee the desired estimation performance. The derived sufficient conditions rely not only on the size of discrete time-delays and the probability distribution law of the distributed time-delays but also on the statistics information of the coefficients of the adopted Rice fading model. Based on the established existence conditions, the gain matrices of the desired estimator are obtained by means of the feasibility of a set of matrix inequalities that can be checked efficiently via available software packages. Finally, the numerical simulation results are provided to show the validity of the main results.
Collapse
|
21
|
Bao H, Hu A, Liu W, Bao B. Hidden Bursting Firings and Bifurcation Mechanisms in Memristive Neuron Model With Threshold Electromagnetic Induction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:502-511. [PMID: 30990198 DOI: 10.1109/tnnls.2019.2905137] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Memristors can be employed to mimic biological neural synapses or to describe electromagnetic induction effects. To exhibit the threshold effect of electromagnetic induction, this paper presents a threshold flux-controlled memristor and examines its frequency-dependent pinched hysteresis loops. Using an electromagnetic induction current generated by the threshold memristor to replace the external current in 2-D Hindmarsh-Rose (HR) neuron model, a 3-D memristive HR (mHR) neuron model with global hidden oscillations is established and the corresponding numerical simulations are performed. It is found that due to no equilibrium point, the obtained mHR neuron model always operates in hidden bursting firing patterns, including coexisting hidden bursting firing patterns with bistability also. In addition, the model exhibits complex dynamics of the actual neuron electrical activities, which acts like the 3-D HR neuron model, indicating its feasibility. In particular, by constructing the fold and Hopf bifurcation sets of the fast-scale subsystem, the bifurcation mechanisms of hidden bursting firings are expounded. Finally, circuit experiments on hardware breadboards are deployed and the captured results well match with the numerical results, validating the physical mechanism of biological neuron and the reliability of electronic neuron.
Collapse
|
22
|
Chen H, Shi P, Lim CC. Cluster Synchronization for Neutral Stochastic Delay Networks via Intermittent Adaptive Control. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:3246-3259. [PMID: 30794189 DOI: 10.1109/tnnls.2018.2890269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper studies the problem of cluster synchronization at exponential rates in both the mean square and almost sure senses for neutral stochastic coupled neural networks with time-varying delay via a periodically intermittent pinning adaptive control strategy. The network topology can be symmetric or asymmetric, with each network node being described by neutral stochastic delayed neural networks. When considering the exponential stabilization in the mean square sense for neutral stochastic delay system, the delay integral inequality approach is used to circumvent the obstacle arising from the coexistence of random disturbance, neutral item, and time-varying delay. The almost surely exponential stabilization is also analyzed with the nonnegative semimartingale convergence theorem. Sufficient criteria on cluster synchronization at exponential rates in both the mean square and almost sure senses of the underlying networks under the designed control scheme are derived. The effectiveness of the obtained theoretical results is illustrated by two examples.
Collapse
|
23
|
Zhang M, Wang D. Robust dissipativity analysis for delayed memristor-based inertial neural network. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Pershin YV, Di Ventra M. On the validity of memristor modeling in the neural network literature. Neural Netw 2019; 121:52-56. [PMID: 31536899 DOI: 10.1016/j.neunet.2019.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks.
Collapse
Affiliation(s)
- Yuriy V Pershin
- Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
25
|
Guo Z, Gong S, Wen S, Huang T. Event-Based Synchronization Control for Memristive Neural Networks With Time-Varying Delay. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:3268-3277. [PMID: 29994686 DOI: 10.1109/tcyb.2018.2839686] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we investigate the global synchronization control problem for memristive neural networks (MNNs) with time-varying delay. A novel event-triggered controller is introduced with the linear diffusive term and discontinuous sign term. In order to greatly reduce the computation cost of the controller under certain event-triggering condition, two event-based control schemes are proposed with static event-triggering condition and dynamic event-triggering condition. Some sufficient conditions are derived by these control schemes to ensure the response MNN to be synchronized with the driving one. Furthermore, under certain event-triggering conditions, a positive lower bound is achieved for the interexecution time to guarantee that Zeno behavior cannot be executed. Finally, numerical simulations are provided to substantiate the effectiveness of the proposed theoretical results.
Collapse
|
26
|
Sheng Y, Lewis FL, Zeng Z. Exponential Stabilization of Fuzzy Memristive Neural Networks With Hybrid Unbounded Time-Varying Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:739-750. [PMID: 30047913 DOI: 10.1109/tnnls.2018.2852497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper is concerned with exponential stabilization for a class of Takagi-Sugeno fuzzy memristive neural networks (FMNNs) with unbounded discrete and distributed time-varying delays. Under the framework of Filippov solutions, algebraic criteria are established to guarantee exponential stabilization of the addressed FMNNs with hybrid unbounded time delays via designing a fuzzy state feedback controller by exploiting inequality techniques, calculus theorems, and theories of fuzzy sets. The obtained results in this paper enhance and generalize some existing ones. Meanwhile, a general theoretical framework is proposed to investigate the dynamical behaviors of various neural networks with mixed infinite time delays. Finally, two simulation examples are performed to illustrate the validity of the derived outcomes.
Collapse
|
27
|
Exponential Synchronization of Stochastic Memristive Neural Networks with Time-Varying Delays. Neural Process Lett 2019. [DOI: 10.1007/s11063-019-09989-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Cheng J, Chang XH, Park JH, Li H, Wang H. Fuzzy-model-based H∞ control for discrete-time switched systems with quantized feedback and unreliable links. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2018.01.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|