1
|
Chen M, Li X. Concept Factorization With Local Centroids. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:5247-5253. [PMID: 33048756 DOI: 10.1109/tnnls.2020.3027068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Data clustering is a fundamental problem in the field of machine learning. Among the numerous clustering techniques, matrix factorization-based methods have achieved impressive performances because they are able to provide a compact and interpretable representation of the input data. However, most of the existing works assume that each class has a global centroid, which does not hold for data with complicated structures. Besides, they cannot guarantee that the sample is associated with the nearest centroid. In this work, we present a concept factorization with the local centroids (CFLCs) approach for data clustering. The proposed model has the following advantages: 1) the samples from the same class are allowed to connect with multiple local centroids such that the manifold structure is captured; 2) the pairwise relationship between the samples and centroids is modeled to produce a reasonable label assignment; and 3) the clustering problem is formulated as a bipartite graph partitioning task, and an efficient algorithm is designed for optimization. Experiments on several data sets validate the effectiveness of the CFLC model and demonstrate its superior performance over the state of the arts.
Collapse
|
2
|
Su Y, Xu J, Hong D, Fan F, Zhang J, Jing P. Deep low-rank matrix factorization with latent correlation estimation for micro-video multi-label classification. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Fu W, Xue B, Gao X, Zhang M. Transductive transfer learning based Genetic Programming for balanced and unbalanced document classification using different types of features. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Li W, Huan W, Hou B, Tian Y, Zhang Z, Song A. Can Emotion be Transferred? – A Review on Transfer Learning for EEG-Based Emotion Recognition. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3098842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Peng X, Zhu H, Feng J, Shen C, Zhang H, Zhou JT. Deep Clustering With Sample-Assignment Invariance Prior. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:4857-4868. [PMID: 31902782 DOI: 10.1109/tnnls.2019.2958324] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most popular clustering methods map raw image data into a projection space in which the clustering assignment is obtained with the vanilla k-means approach. In this article, we discovered a novel prior, namely, there exists a common invariance when assigning an image sample to clusters using different metrics. In short, different distance metrics will lead to similar soft clustering assignments on the manifold. Based on such a novel prior, we propose a novel clustering method by minimizing the discrepancy between pairwise sample assignments for each data point. To the best of our knowledge, this could be the first work to reveal the sample-assignment invariance prior based on the idea of treating labels as ideal representations. Furthermore, the proposed method is one of the first end-to-end clustering approaches, which jointly learns clustering assignment and representation. Extensive experimental results show that the proposed method is remarkably superior to 16 state-of-the-art clustering methods on five image data sets in terms of four evaluation metrics.
Collapse
|
6
|
Han N, Wu J, Fang X, Teng S, Zhou G, Xie S, Li X. Projective Double Reconstructions Based Dictionary Learning Algorithm for Cross-Domain Recognition. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; PP:9220-9233. [PMID: 32970596 DOI: 10.1109/tip.2020.3024728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dictionary learning plays a significant role in the field of machine learning. Existing works mainly focus on learning dictionary from a single domain. In this paper, we propose a novel projective double reconstructions (PDR) based dictionary learning algorithm for cross-domain recognition. Owing the distribution discrepancy between different domains, the label information is hard utilized for improving discriminability of dictionary fully. Thus, we propose a more flexible label consistent term and associate it with each dictionary item, which makes the reconstruction coefficients have more discriminability as much as possible. Due to the intrinsic correlation between cross-domain data, the data should be reconstructed with each other. Based on this consideration, we further propose a projective double reconstructions scheme to guarantee that the learned dictionary has the abilities of data itself reconstruction and data crossreconstruction. This also guarantees that the data from different domains can be boosted mutually for obtaining a good data alignment, making the learned dictionary have more transferability. We integrate the double reconstructions, label consistency constraint and classifier learning into a unified objective and its solution can be obtained by proposed optimization algorithm that is more efficient than the conventional l1 optimization based dictionary learning methods. The experiments show that the proposed PDR not only greatly reduces the time complexity for both training and testing, but also outperforms over the stateof- the-art methods.
Collapse
|
7
|
|
8
|
Zhang H, Gong C, Qian J, Zhang B, Xu C, Yang J. Efficient Recovery of Low-Rank Matrix via Double Nonconvex Nonsmooth Rank Minimization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2916-2925. [PMID: 30892254 DOI: 10.1109/tnnls.2019.2900572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, there is a rapidly increasing attraction for the efficient recovery of low-rank matrix in computer vision and machine learning. The popular convex solution of rank minimization is nuclear norm-based minimization (NNM), which usually leads to a biased solution since NNM tends to overshrink the rank components and treats each rank component equally. To address this issue, some nonconvex nonsmooth rank (NNR) relaxations have been exploited widely. Different from these convex and nonconvex rank substitutes, this paper first introduces a general and flexible rank relaxation function named weighted NNR relaxation function, which is actually derived from the initial double NNR (DNNR) relaxations, i.e., DNNR relaxation function acts on the nonconvex singular values function (SVF). An iteratively reweighted SVF optimization algorithm with continuation technology through computing the supergradient values to define the weighting vector is devised to solve the DNNR minimization problem, and the closed-form solution of the subproblem can be efficiently obtained by a general proximal operator, in which each element of the desired weighting vector usually satisfies the nondecreasing order. We next prove that the objective function values decrease monotonically, and any limit point of the generated subsequence is a critical point. Combining the Kurdyka-Łojasiewicz property with some milder assumptions, we further give its global convergence guarantee. As an application in the matrix completion problem, experimental results on both synthetic data and real-world data can show that our methods are competitive with several state-of-the-art convex and nonconvex matrix completion methods.
Collapse
|
9
|
Ding Z, Fu Y. Deep Transfer Low-Rank Coding for Cross-Domain Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1768-1779. [PMID: 30371396 DOI: 10.1109/tnnls.2018.2874567] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transfer learning has attracted great attention to facilitate the sparsely labeled or unlabeled target learning by leveraging previously well-established source domain through knowledge transfer. Recent activities on transfer learning attempt to build deep architectures to better fight off cross-domain divergences by extracting more effective features. However, its generalizability would decrease greatly due to the domain mismatch enlarges, particularly at the top layers. In this paper, we develop a novel deep transfer low-rank coding based on deep convolutional neural networks, where we investigate multilayer low-rank coding at the top task-specific layers. Specifically, multilayer common dictionaries shared across two domains are obtained to bridge the domain gap such that more enriched domain-invariant knowledge can be captured through a layerwise fashion. With rank minimization on the new codings, our model manages to preserve the global structures across source and target, and thus, similar samples of two domains tend to gather together for effective knowledge transfer. Furthermore, domain/classwise adaption terms are integrated to guide the effective coding optimization in a semisupervised manner, so the marginal and conditional disparities of two domains will be alleviated. Experimental results on three visual domain adaptation benchmarks verify the effectiveness of our proposed approach on boosting the recognition performance for the target domain, by comparing it with other state-of-the-art deep transfer learning.
Collapse
|
10
|
Structure preservation and distribution alignment in discriminative transfer subspace learning. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.01.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Shi W, Gong Y, Tao X, Cheng D, Zheng N. Fine-Grained Image Classification Using Modified DCNNs Trained by Cascaded Softmax and Generalized Large-Margin Losses. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:683-694. [PMID: 30047915 DOI: 10.1109/tnnls.2018.2852721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We develop a fine-grained image classifier using a general deep convolutional neural network (DCNN). We improve the fine-grained image classification accuracy of a DCNN model from the following two aspects. First, to better model the h -level hierarchical label structure of the fine-grained image classes contained in the given training data set, we introduce h fully connected (fc) layers to replace the top fc layer of a given DCNN model and train them with the cascaded softmax loss. Second, we propose a novel loss function, namely, generalized large-margin (GLM) loss, to make the given DCNN model explicitly explore the hierarchical label structure and the similarity regularities of the fine-grained image classes. The GLM loss explicitly not only reduces between-class similarity and within-class variance of the learned features by DCNN models but also makes the subclasses belonging to the same coarse class be more similar to each other than those belonging to different coarse classes in the feature space. Moreover, the proposed fine-grained image classification framework is independent and can be applied to any DCNN structures. Comprehensive experimental evaluations of several general DCNN models (AlexNet, GoogLeNet, and VGG) using three benchmark data sets (Stanford car, fine-grained visual classification-aircraft, and CUB-200-2011) for the fine-grained image classification task demonstrate the effectiveness of our method.
Collapse
|
12
|
Xu B, Liu Q, Huang T. A Discrete-Time Projection Neural Network for Sparse Signal Reconstruction With Application to Face Recognition. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:151-162. [PMID: 29994338 DOI: 10.1109/tnnls.2018.2836933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper deals with sparse signal reconstruction by designing a discrete-time projection neural network. Sparse signal reconstruction can be converted into an L1 -minimization problem, which can also be changed into the unconstrained basis pursuit denoising problem. To solve the L1 -minimization problem, an iterative algorithm is proposed based on the discrete-time projection neural network, and the global convergence of the algorithm is analyzed by using Lyapunov method. Experiments on sparse signal reconstruction and several popular face data sets are organized to illustrate the effectiveness and performance of the proposed algorithm. The experimental results show that the proposed algorithm is not only robust to different levels of sparsity and amplitude of signals and the noise pixels but also insensitive to the diverse values of scalar weight. Moreover, the value of the step size of the proposed algorithm is close to 1/2, thus a fast convergence rate is potentially possible. Furthermore, the proposed algorithm achieves better classification performance compared with some other algorithms for face recognition.
Collapse
|
13
|
Lu Y, Chen L, Saidi A, Dellandrea E, Wang Y. Discriminative Transfer Learning Using Similarities and Dissimilarities. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:3097-3110. [PMID: 28692988 DOI: 10.1109/tnnls.2017.2705760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transfer learning (TL) aims at solving the problem of learning an effective classification model for a target category, which has few training samples, by leveraging knowledge from source categories with far more training data. We propose a new discriminative TL (DTL) method, combining a series of hypotheses made by both the model learned with target training samples and the additional models learned with source category samples. Specifically, we use the sparse reconstruction residual as a basic discriminant and enhance its discriminative power by comparing two residuals from a positive and a negative dictionary. On this basis, we make use of similarities and dissimilarities by choosing both positively correlated and negatively correlated source categories to form additional dictionaries. A new Wilcoxon-Mann-Whitney statistic-based cost function is proposed to choose the additional dictionaries with unbalanced training data. Also, two parallel boosting processes are applied to both the positive and negative data distributions to further improve classifier performance. On two different image classification databases, the proposed DTL consistently outperforms other state-of-the-art TL methods while at the same time maintaining very efficient runtime.
Collapse
|
14
|
|
15
|
Kong Y, Shao M, Li K, Fu Y. Probabilistic Low-Rank Multitask Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:670-680. [PMID: 28060715 DOI: 10.1109/tnnls.2016.2641160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we consider the problem of learning multiple related tasks simultaneously with the goal of improving the generalization performance of individual tasks. The key challenge is to effectively exploit the shared information across multiple tasks as well as preserve the discriminative information for each individual task. To address this, we propose a novel probabilistic model for multitask learning (MTL) that can automatically balance between low-rank and sparsity constraints. The former assumes a low-rank structure of the underlying predictive hypothesis space to explicitly capture the relationship of different tasks and the latter learns the incoherent sparse patterns private to each task. We derive and perform inference via variational Bayesian methods. Experimental results on both regression and classification tasks on real-world applications demonstrate the effectiveness of the proposed method in dealing with the MTL problems.
Collapse
|
16
|
Li K, Li S, Oh S, Fu Y. Videography-Based Unconstrained Video Analysis. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2017; 26:2261-2273. [PMID: 28287972 DOI: 10.1109/tip.2017.2678800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Video analysis and understanding play a central role in visual intelligence. In this paper, we aim to analyze unconstrained videos, by designing features and approaches to represent and analyze videography styles in the videos. Videography denotes the process of making videos. The unconstrained videos are defined as the long duration consumer videos that usually have diverse editing artifacts and significant complexity of contents. We propose to construct a videography dictionary, which can be utilized to represent every video clip as a sequence of videography words. In addition to semantic features, such as foreground object motion and camera motion, we also incorporate two novel interpretable features to characterize videography, including the scale information and the motion correlations. We then demonstrate that, by using statistical analysis methods, the unique videography signatures extracted from different events can be automatically identified. For real-world applications, we explore the use of videography analysis for three types of applications, including content-based video retrieval, video summarization (both visual and textual), and videography-based feature pooling. In the experiments, we evaluate the performance of our approach and other methods on a large-scale unconstrained video dataset, and show that the proposed approach significantly benefits video analysis in various ways.
Collapse
|