1
|
Meltzer D, Luengo D. ECG-Based Biometric Recognition: A Survey of Methods and Databases. SENSORS (BASEL, SWITZERLAND) 2025; 25:1864. [PMID: 40293056 PMCID: PMC11946575 DOI: 10.3390/s25061864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 04/30/2025]
Abstract
This work presents a comprehensive and chronologically ordered survey of existing studies and data sources on Electrocardiogram (ECG) based biometric recognition systems. This survey is organized in terms of the two main goals pursued in it: first, a description of the main ECG features and recognition techniques used in the existing literature, including a comprehensive compilation of references; second, a survey of the ECG databases available and used by the referenced studies. The most relevant characteristics of the databases are identified, and a comprehensive compilation of databases is given. To date, no other work has presented such a complete overview of both studies and data sources for ECG-based biometric recognition. Readers interested in the subject can obtain an understanding of the state of the art, easily identifying specific key papers by using different criteria, and become aware of the databases where they can test their novel algorithms.
Collapse
Affiliation(s)
- David Meltzer
- Department of Telematics & Electronics, Universidad Politécnica de Madrid, Calle Nikola Tesla s/n, 28031 Madrid, Spain
| | - David Luengo
- Department of Audiovisual & Communications Engineering, Universidad Politécnica de Madrid, Calle Nikola Tesla s/n, 28031 Madrid, Spain;
| |
Collapse
|
2
|
Zhang C, Sheng G, Su J, Duan L. Color fundus photograph-based diabetic retinopathy grading via label relaxed collaborative learning on deep features and radiomics features. Front Cell Dev Biol 2025; 12:1513971. [PMID: 39850805 PMCID: PMC11754185 DOI: 10.3389/fcell.2024.1513971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Diabetic retinopathy (DR) has long been recognized as a common complication of diabetes, making accurate automated grading of its severity essential. Color fundus photographs play a crucial role in the grading of DR. With the advancement of artificial intelligence technologies, numerous researchers have conducted studies on DR grading based on deep features and radiomic features extracted from color fundus photographs. Method We combine deep features and radiomic features to design a feature fusion algorithm. First, we utilize convolutional neural networks to extract deep features from color fundus photographs and employ radiomic methodologies to extract radiomic features. Subsequently, we design a label relaxation-based collaborative learning algorithm for feature fusion. Results We validate the effectiveness of the proposed method on two fundus image datasets: the DR1 Dataset and the MESSIDOR Dataset. The proposed method achieved 96.86 of AUC on DR1 and 96.34 of AUC on MESSIDOR, which are better than state-of-the-art methods. Also, the divergence between the training AUC and testing AUC increases substantially after the removal of manifold regularization. Conclusion Label relaxation can enhance the distinguishability of training samples in the label space, thereby improving the model's classification accuracy. Additionally, graph constraints based on manifold learning methods can mitigate overfitting caused by label relaxation.
Collapse
Affiliation(s)
- Chao Zhang
- School of Information Engineering, Suqian University, Suqian, Jiangsu, China
| | - Guanglei Sheng
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China
| | - Jie Su
- School of Information Engineering, Suqian University, Suqian, Jiangsu, China
| | - Lian Duan
- Department of Medical Informatics, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Wen J, Deng S, Fei L, Zhang Z, Zhang B, Zhang Z, Xu Y. Discriminative Regression With Adaptive Graph Diffusion. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:1797-1809. [PMID: 35767490 DOI: 10.1109/tnnls.2022.3185408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this article, we propose a new linear regression (LR)-based multiclass classification method, called discriminative regression with adaptive graph diffusion (DRAGD). Different from existing graph embedding-based LR methods, DRAGD introduces a new graph learning and embedding term, which explores the high-order structure information between four tuples, rather than conventional sample pairs to learn an intrinsic graph. Moreover, DRAGD provides a new way to simultaneously capture the local geometric structure and representation structure of data in one term. To enhance the discriminability of the transformation matrix, a retargeted learning approach is introduced. As a result of combining the above-mentioned techniques, DRAGD can flexibly explore more unsupervised information underlying the data and the label information to obtain the most discriminative transformation matrix for multiclass classification tasks. Experimental results on six well-known real-world databases and a synthetic database demonstrate that DRAGD is superior to the state-of-the-art LR methods.
Collapse
|
4
|
Sheng J, Lam S, Zhang J, Zhang Y, Cai J. Multi-omics fusion with soft labeling for enhanced prediction of distant metastasis in nasopharyngeal carcinoma patients after radiotherapy. Comput Biol Med 2024; 168:107684. [PMID: 38039891 DOI: 10.1016/j.compbiomed.2023.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Omics fusion has emerged as a crucial preprocessing approach in medical image processing, significantly assisting several studies. One of the challenges encountered in integrating omics data is the unpredictability arising from disparities in data sources and medical imaging equipment. Due to these differences, the distribution of omics futures exhibits spatial heterogeneity, diminishing their capacity to enhance subsequent tasks. To overcome this challenge and facilitate the integration of their joint application to specific medical objectives, this study aims to develop a fusion methodology for nasopharyngeal carcinoma (NPC) distant metastasis prediction to mitigate the disparities inherent in omics data. The multi-kernel late-fusion method can reduce the impact of these differences by mapping the features using the most suiTable single-kernel function and then combining them in a high-dimensional space that can effectively represent the data. The proposed approach in this study employs a distinctive framework incorporating a label-softening technique alongside a multi-kernel-based Radial basis function (RBF) neural network to address these limitations. An efficient representation of the data may be achieved by utilizing the multi-kernel to map the inherent features and then merging them in a space with many dimensions. However, the inflexibility of label fitting poses a constraint on using multi-kernel late-fusion methods in complex NPC datasets, hence affecting the efficacy of general classifiers in dealing with high-dimensional characteristics. The label softening increases the disparity between the two cohorts, providing a more flexible structure for allocating labels. The proposed model is evaluated on multi-omics datasets, and the results demonstrate its strength and effectiveness in predicting distant metastasis of NPC patients.
Collapse
Affiliation(s)
- Jiabao Sheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - SaiKit Lam
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
5
|
Wang J, Xie F, Nie F, Li X. Robust Supervised and Semisupervised Least Squares Regression Using ℓ 2,p-Norm Minimization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:8389-8403. [PMID: 35196246 DOI: 10.1109/tnnls.2022.3150102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Least squares regression (LSR) is widely applied in statistics theory due to its theoretical solution, which can be used in supervised, semisupervised, and multiclass learning. However, LSR begins to fail and its discriminative ability cannot be guaranteed when the original data have been corrupted and noised. In reality, the noises are unavoidable and could greatly affect the error construction in LSR. To cope with this problem, a robust supervised LSR (RSLSR) is proposed to eliminate the effect of noises and outliers. The loss function adopts l2,p -norm ( ) instead of square loss. In addition, the probability weight is added to each sample to determine whether the sample is a normal point or not. Its physical meaning is very clear, in which if the point is normal, the probability value is 1; otherwise, the weight is 0. To effectively solve the concave problem, an iterative algorithm is introduced, in which additional weights are added to penalize normal samples with large errors. We also extend RSLSR to robust semisupervised LSR (RSSLSR) to fully utilize the limited labeled samples. A large number of classification performances on corrupted data illustrate the robustness of the proposed methods.
Collapse
|
6
|
Wang C, Yang Z, Ye J, Yang X. Kernel-Free Quadratic Surface Regression for Multi-Class Classification. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1103. [PMID: 37510050 PMCID: PMC10379108 DOI: 10.3390/e25071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
For multi-class classification problems, a new kernel-free nonlinear classifier is presented, called the hard quadratic surface least squares regression (HQSLSR). It combines the benefits of the least squares loss function and quadratic kernel-free trick. The optimization problem of HQSLSR is convex and unconstrained, making it easy to solve. Further, to improve the generalization ability of HQSLSR, a softened version (SQSLSR) is proposed by introducing an ε-dragging technique, which can enlarge the between-class distance. The optimization problem of SQSLSR is solved by designing an alteration iteration algorithm. The convergence, interpretability and computational complexity of our methods are addressed in a theoretical analysis. The visualization results on five artificial datasets demonstrate that the obtained regression function in each category has geometric diversity and the advantage of the ε-dragging technique. Furthermore, experimental results on benchmark datasets show that our methods perform comparably to some state-of-the-art classifiers.
Collapse
Affiliation(s)
- Changlin Wang
- College of Mathematics and Systems Science, Xinjiang University, Urumuqi 830046, China
- Institute of Mathematics and Physics, Xinjiang University, Urumuqi 830046, China
| | - Zhixia Yang
- College of Mathematics and Systems Science, Xinjiang University, Urumuqi 830046, China
- Institute of Mathematics and Physics, Xinjiang University, Urumuqi 830046, China
| | - Junyou Ye
- College of Mathematics and Systems Science, Xinjiang University, Urumuqi 830046, China
- Institute of Mathematics and Physics, Xinjiang University, Urumuqi 830046, China
| | - Xue Yang
- College of Mathematics and Systems Science, Xinjiang University, Urumuqi 830046, China
- Institute of Mathematics and Physics, Xinjiang University, Urumuqi 830046, China
| |
Collapse
|
7
|
Zhang Y, Xia K, Jiang Y, Qian P, Cai W, Qiu C, Lai KW, Wu D. Multi-Modality Fusion & Inductive Knowledge Transfer Underlying Non-Sparse Multi-Kernel Learning and Distribution Adaption. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2387-2397. [PMID: 35025748 DOI: 10.1109/tcbb.2022.3142748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
With the development of sensors, more and more multimodal data are accumulated, especially in biomedical and bioinformatics fields. Therefore, multimodal data analysis becomes very important and urgent. In this study, we combine multi-kernel learning and transfer learning, and propose a feature-level multi-modality fusion model with insufficient training samples. To be specific, we firstly extend kernel Ridge regression to its multi-kernel version under the lp-norm constraint to explore complementary patterns contained in multimodal data. Then we use marginal probability distribution adaption to minimize the distribution differences between the source domain and the target domain to solve the problem of insufficient training samples. Based on epilepsy EEG data provided by the University of Bonn, we construct 12 multi-modality & transfer scenarios to evaluate our model. Experimental results show that compared with baselines, our model performs better on most scenarios.
Collapse
|
8
|
Liu Z, Lai Z, Ou W, Zhang K, Huo H. Discriminative sparse least square regression for semi-supervised learning. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
Regularized denoising latent subspace based linear regression for image classification. Pattern Anal Appl 2023. [DOI: 10.1007/s10044-023-01149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
10
|
Zhang Y, Ding W. Motor imagery classification via stacking-based Takagi–Sugeno–Kang fuzzy classifier ensemble. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Zhang Y, Yang D, Lam S, Li B, Teng X, Zhang J, Zhou T, Ma Z, Ying TC(M, Cai J. Radiomics-Based Detection of COVID-19 from Chest X-ray Using Interpretable Soft Label-Driven TSK Fuzzy Classifier. Diagnostics (Basel) 2022; 12:2613. [PMID: 36359456 PMCID: PMC9689330 DOI: 10.3390/diagnostics12112613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 05/22/2024] Open
Abstract
The COVID-19 pandemic has posed a significant global public health threat with an escalating number of new cases and death toll daily. The early detection of COVID-related CXR abnormality potentially allows the early isolation of suspected cases. Chest X-Ray (CXR) is a fast and highly accessible imaging modality. Recently, a number of CXR-based AI models have been developed for the automated detection of COVID-19. However, most existing models are difficult to interpret due to the use of incomprehensible deep features in their models. Confronted with this, we developed an interpretable TSK fuzzy system in this study for COVID-19 detection using radiomics features extracted from CXR images. There are two main contributions. (1) When TSK fuzzy systems are applied to classification tasks, the commonly used binary label matrix of training samples is transformed into a soft one in order to learn a more discriminant transformation matrix and hence improve classification accuracy. (2) Based on the assumption that the samples in the same class should be kept as close as possible when they are transformed into the label space, the compactness class graph is introduced to avoid overfitting caused by label matrix relaxation. Our proposed model for a multi-categorical classification task (COVID-19 vs. No-Findings vs. Pneumonia) was evaluated using 600 CXR images from publicly available datasets and compared against five state-of-the-art AI models in aspects of classification accuracy. Experimental findings showed that our model achieved classification accuracy of over 83%, which is better than the state-of-the-art models, while maintaining high interpretability.
Collapse
Affiliation(s)
- Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Medical informatics, Nantong University, Nantong 226007, China
| | - Dongrong Yang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Saikit Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bing Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ta Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Tin-Cheung (Michael) Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
12
|
Yang Z, Wu X, Huang P, Zhang F, Wan M, Lai Z. Orthogonal Autoencoder Regression for Image Classification. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Li P, Sheng B, Chen CLP. Face Sketch Synthesis Using Regularized Broad Learning System. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5346-5360. [PMID: 33852397 DOI: 10.1109/tnnls.2021.3070463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There are two main categories of face sketch synthesis: data- and model-driven. The data-driven method synthesizes sketches from training photograph-sketch patches at the cost of detail loss. The model-driven method can preserve more details, but the mapping from photographs to sketches is a time-consuming training process, especially when the deep structures require to be refined. We propose a face sketch synthesis method via regularized broad learning system (RBLS). The broad learning-based system directly transforms photographs into sketches with rich details preserved. Also, the incremental learning scheme of broad learning system (BLS) ensures that our method easily increases feature mappings and remodels the network without retraining when the extracted feature mapping nodes are not sufficient. Besides, a Bayesian estimation-based regularization is introduced with the BLS to aid further feature selection and improve the generalization ability and robustness. Various experiments on the CUHK student data set and Aleix Robert (AR) data set demonstrated the effectiveness and efficiency of our RBLS method. Unlike existing methods, our method synthesizes high-quality face sketches much efficiently and greatly reduces computational complexity both in the training and test processes.
Collapse
|
14
|
Gong X, Zhang T, Chen CLP, Liu Z. Research Review for Broad Learning System: Algorithms, Theory, and Applications. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:8922-8950. [PMID: 33729975 DOI: 10.1109/tcyb.2021.3061094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, the appearance of the broad learning system (BLS) is poised to revolutionize conventional artificial intelligence methods. It represents a step toward building more efficient and effective machine-learning methods that can be extended to a broader range of necessary research fields. In this survey, we provide a comprehensive overview of the BLS in data mining and neural networks for the first time, focusing on summarizing various BLS methods from the aspects of its algorithms, theories, applications, and future open research questions. First, we introduce the basic pattern of BLS manifestation, the universal approximation capability, and essence from the theoretical perspective. Furthermore, we focus on BLS's various improvements based on the current state of the theoretical research, which further improves its flexibility, stability, and accuracy under general or specific conditions, including classification, regression, semisupervised, and unsupervised tasks. Due to its remarkable efficiency, impressive generalization performance, and easy extendibility, BLS has been applied in different domains. Next, we illustrate BLS's practical advances, such as computer vision, biomedical engineering, control, and natural language processing. Finally, the future open research problems and promising directions for BLSs are pointed out.
Collapse
|
15
|
Ran X, Shi J, Chen Y, Jiang K. Multimodal neuroimage data fusion based on multikernel learning in personalized medicine. Front Pharmacol 2022; 13:947657. [PMID: 36059988 PMCID: PMC9428611 DOI: 10.3389/fphar.2022.947657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging has been widely used as a diagnostic technique for brain diseases. With the development of artificial intelligence, neuroimaging analysis using intelligent algorithms can capture more image feature patterns than artificial experience-based diagnosis. However, using only single neuroimaging techniques, e.g., magnetic resonance imaging, may omit some significant patterns that may have high relevance to the clinical target. Therefore, so far, combining different types of neuroimaging techniques that provide multimodal data for joint diagnosis has received extensive attention and research in the area of personalized medicine. In this study, based on the regularized label relaxation linear regression model, we propose a multikernel version for multimodal data fusion. The proposed method inherits the merits of the regularized label relaxation linear regression model and also has its own superiority. It can explore complementary patterns across different modal data and pay more attention to the modal data that have more significant patterns. In the experimental study, the proposed method is evaluated in the scenario of Alzheimer’s disease diagnosis. The promising performance indicates that the performance of multimodality fusion via multikernel learning is better than that of single modality. Moreover, the decreased square difference between training and testing performance indicates that overfitting is reduced and hence the generalization ability is improved.
Collapse
|
16
|
Chen Z, Wu XJ, Kittler J. Relaxed Block-Diagonal Dictionary Pair Learning With Locality Constraint for Image Recognition. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3645-3659. [PMID: 33764879 DOI: 10.1109/tnnls.2021.3053941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We propose a novel structured analysis-synthesis dictionary pair learning method for efficient representation and image classification, referred to as relaxed block-diagonal dictionary pair learning with a locality constraint (RBD-DPL). RBD-DPL aims to learn relaxed block-diagonal representations of the input data to enhance the discriminability of both analysis and synthesis dictionaries by dynamically optimizing the block-diagonal components of representation, while the off-block-diagonal counterparts are set to zero. In this way, the learned synthesis subdictionary is allowed to be more flexible in reconstructing the samples from the same class, and the analysis dictionary effectively transforms the original samples into a relaxed coefficient subspace, which is closely associated with the label information. Besides, we incorporate a locality-constraint term as a complement of the relaxation learning to enhance the locality of the analytical encoding so that the learned representation exhibits high intraclass similarity. A linear classifier is trained in the learned relaxed representation space for consistent classification. RBD-DPL is computationally efficient because it avoids both the use of class-specific complementary data matrices to learn discriminative analysis dictionary, as well as the time-consuming l1/l0 -norm sparse reconstruction process. The experimental results demonstrate that our RBD-DPL achieves at least comparable or better recognition performance than the state-of-the-art algorithms. Moreover, both the training and testing time are significantly reduced, which verifies the efficiency of our method. The MATLAB code of the proposed RBD-DPL is available at https://github.com/chenzhe207/RBD-DPL.
Collapse
|
17
|
Regularized discriminative broad learning system for image classification. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Fang X, Han N, Zhou G, Teng S, Xu Y, Xie S. Dynamic Double Classifiers Approximation for Cross-Domain Recognition. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:2618-2629. [PMID: 32667889 DOI: 10.1109/tcyb.2020.3004398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In general, existing cross-domain recognition methods mainly focus on changing the feature representation of data or modifying the classifier parameter and their efficiencies are indicated by the better performance. However, most existing methods do not simultaneously integrate them into a unified optimization objective for further improving the learning efficiency. In this article, we propose a novel cross-domain recognition algorithm framework by integrating both of them. Specifically, we reduce the discrepancies in both the conditional distribution and marginal distribution between different domains in order to learn a new feature representation which pulls the data from different domains closer on the whole. However, the data from different domains but the same class cannot interlace together enough and thus it is not reasonable to mix them for training a single classifier. To this end, we further propose to learn double classifiers on the respective domain and require that they dynamically approximate to each other during learning. This guarantees that we finally learn a suitable classifier from the double classifiers by using the strategy of classifier fusion. The experiments show that the proposed method outperforms over the state-of-the-art methods.
Collapse
|
19
|
Transfer Subspace Learning based on Double Relaxed Regression for Image Classification. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Huang P, Yang Z, Wang W, Zhang F. Denoising Low-Rank Discrimination based Least Squares Regression for image classification. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
|
22
|
Global structure-guided neighborhood preserving embedding for dimensionality reduction. INT J MACH LEARN CYB 2022. [DOI: 10.1007/s13042-021-01502-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ma J, Zhou S. Discriminative least squares regression for multiclass classification based on within-class scatter minimization. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Zhang Y, Lam S, Yu T, Teng X, Zhang J, Lee FKH, Au KH, Yip CWY, Wang S, Cai J. Integration of an imbalance framework with novel high-generalizable classifiers for radiomics-based distant metastases prediction of advanced nasopharyngeal carcinoma. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.107649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
25
|
Gao M, Liu R, Mao J. Noise Robustness Low-Rank Learning Algorithm for Electroencephalogram Signal Classification. Front Neurosci 2021; 15:797378. [PMID: 34899177 PMCID: PMC8652211 DOI: 10.3389/fnins.2021.797378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Electroencephalogram (EEG) is often used in clinical epilepsy treatment to monitor electrical signal changes in the brain of patients with epilepsy. With the development of signal processing and artificial intelligence technology, artificial intelligence classification method plays an important role in the automatic recognition of epilepsy EEG signals. However, traditional classifiers are easily affected by impurities and noise in epileptic EEG signals. To solve this problem, this paper develops a noise robustness low-rank learning (NRLRL) algorithm for EEG signal classification. NRLRL establishes a low-rank subspace to connect the original data space and label space. Making full use of supervision information, it considers the local information preservation of samples to ensure the low-rank representation of within-class compactness and between-classes dispersion. The asymmetric least squares support vector machine (aLS-SVM) is embedded into the objective function of NRLRL. The aLS-SVM finds the maximum quantile distance between the two classes of samples based on the pinball loss function, which further improves the noise robustness of the model. Several classification experiments with different noise intensity are designed on the Bonn data set, and the experiment results verify the effectiveness of the NRLRL algorithm.
Collapse
Affiliation(s)
- Ming Gao
- College of Sports Science and Technology, Wuhan Sports University, Wuhan, China
| | - Runmin Liu
- College of Sports Engineering and Information Technology, Wuhan Sports University, Wuhan, China
| | - Jie Mao
- College of Sports Engineering and Information Technology, Wuhan Sports University, Wuhan, China
| |
Collapse
|
26
|
|
27
|
Mokhtia M, Eftekhari M, Saberi-Movahed F. Dual-manifold regularized regression models for feature selection based on hesitant fuzzy correlation. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Lv M, Chen T, Yang Y, Tu T, Zhang N, Li W, Li W. Membranous nephropathy classification using microscopic hyperspectral imaging and tensor patch-based discriminative linear regression. BIOMEDICAL OPTICS EXPRESS 2021; 12:2968-2978. [PMID: 34168909 PMCID: PMC8194628 DOI: 10.1364/boe.421345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 05/14/2023]
Abstract
Optical kidney biopsy, serological examination, and clinical symptoms are the main methods for membranous nephropathy (MN) diagnosis. However, false positives and undetectable biochemical components in the results of optical inspections lead to unsatisfactory diagnostic sensitivity and pose obstacles to pathogenic mechanism analysis. In order to reveal detailed component information of immune complexes of MN, microscopic hyperspectral imaging technology is employed to establish a hyperspectral database of 68 patients with two types of MN. Based on the characteristic of the medical HSI, a novel framework of tensor patch-based discriminative linear regression (TDLR) is proposed for MN classification. Experimental results show that the classification accuracy of the proposed model for MN identification is 98.77%. The combination of tensor-based classifiers and hyperspectral data analysis provides new ideas for the research of kidney pathology, which has potential clinical value for the automatic diagnosis of MN.
Collapse
Affiliation(s)
- Meng Lv
- School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081, China
| | - Tianhong Chen
- School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081, China
| | - Yue Yang
- Department of Kidney Disease, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tianqi Tu
- Department of Kidney Disease, China-Japan Friendship Hospital, Beijing 100029, China
| | - Nianrong Zhang
- Department of Kidney Disease, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenge Li
- Department of Kidney Disease, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei Li
- School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081, China
| |
Collapse
|
29
|
Qian J, Zhu S, Wong WK, Zhang H, Lai Z, Yang J. Dual robust regression for pattern classification. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.09.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
|
31
|
Lu J, Lin J, Lai Z, Wang H, Zhou J. Target redirected regression with dynamic neighborhood structure. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.08.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Xie GS, Zhang Z, Liu L, Zhu F, Zhang XY, Shao L, Li X. SRSC: Selective, Robust, and Supervised Constrained Feature Representation for Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:4290-4302. [PMID: 31870993 DOI: 10.1109/tnnls.2019.2953675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Feature representation learning, an emerging topic in recent years, has achieved great progress. Powerful learned features can lead to excellent classification accuracy. In this article, a selective and robust feature representation framework with a supervised constraint (SRSC) is presented. SRSC seeks a selective, robust, and discriminative subspace by transforming the original feature space into the category space. Particularly, we add a selective constraint to the transformation matrix (or classifier parameter) that can select discriminative dimensions of the input samples. Moreover, a supervised regularization is tailored to further enhance the discriminability of the subspace. To relax the hard zero-one label matrix in the category space, an additional error term is also incorporated into the framework, which can lead to a more robust transformation matrix. SRSC is formulated as a constrained least square learning (feature transforming) problem. For the SRSC problem, an inexact augmented Lagrange multiplier method (ALM) is utilized to solve it. Extensive experiments on several benchmark data sets adequately demonstrate the effectiveness and superiority of the proposed method. The proposed SRSC approach has achieved better performances than the compared counterpart methods.
Collapse
|
33
|
Han N, Wu J, Fang X, Teng S, Zhou G, Xie S, Li X. Projective Double Reconstructions Based Dictionary Learning Algorithm for Cross-Domain Recognition. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; PP:9220-9233. [PMID: 32970596 DOI: 10.1109/tip.2020.3024728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dictionary learning plays a significant role in the field of machine learning. Existing works mainly focus on learning dictionary from a single domain. In this paper, we propose a novel projective double reconstructions (PDR) based dictionary learning algorithm for cross-domain recognition. Owing the distribution discrepancy between different domains, the label information is hard utilized for improving discriminability of dictionary fully. Thus, we propose a more flexible label consistent term and associate it with each dictionary item, which makes the reconstruction coefficients have more discriminability as much as possible. Due to the intrinsic correlation between cross-domain data, the data should be reconstructed with each other. Based on this consideration, we further propose a projective double reconstructions scheme to guarantee that the learned dictionary has the abilities of data itself reconstruction and data crossreconstruction. This also guarantees that the data from different domains can be boosted mutually for obtaining a good data alignment, making the learned dictionary have more transferability. We integrate the double reconstructions, label consistency constraint and classifier learning into a unified objective and its solution can be obtained by proposed optimization algorithm that is more efficient than the conventional l1 optimization based dictionary learning methods. The experiments show that the proposed PDR not only greatly reduces the time complexity for both training and testing, but also outperforms over the stateof- the-art methods.
Collapse
|
34
|
|
35
|
Mokhtia M, Eftekhari M, Saberi-Movahed F. Feature selection based on regularization of sparsity based regression models by hesitant fuzzy correlation. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
|
37
|
Jiang Z, Chung FL, Wang S. Recognition of Multiclass Epileptic EEG Signals Based on Knowledge and Label Space Inductive Transfer. IEEE Trans Neural Syst Rehabil Eng 2019; 27:630-642. [PMID: 30872235 DOI: 10.1109/tnsre.2019.2904708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Electroencephalogram (EEG) signal recognition based on machine learning models is becoming more and more attractive in epilepsy detection. For multiclass epileptic EEG signal recognition tasks including the detection of epileptic EEG signals from different blends of different background data and epilepsy EEG data and the classification of different types of seizures, we may perhaps encounter two serious challenges: (1) a large amount of EEG signal data for training are not available and (2) the models for epileptic EEG signal recognition are often so complicated that they are not as easy to explain as a linear model. In this paper, we utilize the proposed transfer learning technique to circumvent the first challenge and then design a novel linear model to circumvent the second challenge. Concretely, we originally combine γ -LSR with transfer learning to propose a novel knowledge and label space inductive transfer learning model for multiclass EEG signal recognition. By transferring both knowledge and the proposed generalized label space from the source domain to the target domain, the proposed model achieves enhanced classification performance on the target domain without the use of kernel trick. In contrast to the other inductive transfer learning methods, the method uses the generalized linear model such that it becomes simpler and more interpretable. Experimental results indicate the effectiveness of the proposed method for multiclass epileptic EEG signal recognition.
Collapse
|
38
|
Yan K, Fang X, Xu Y, Liu B. Protein fold recognition based on multi-view modeling. Bioinformatics 2019; 35:2982-2990. [DOI: 10.1093/bioinformatics/btz040] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/29/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Motivation
Protein fold recognition has attracted increasing attention because it is critical for studies of the 3D structures of proteins and drug design. Researchers have been extensively studying this important task, and several features with high discriminative power have been proposed. However, the development of methods that efficiently combine these features to improve the predictive performance remains a challenging problem.
Results
In this study, we proposed two algorithms: MV-fold and MT-fold. MV-fold is a new computational predictor based on the multi-view learning model for fold recognition. Different features of proteins were treated as different views of proteins, including the evolutionary information, secondary structure information and physicochemical properties. These different views constituted the latent space. The ε-dragging technique was employed to enlarge the margins between different protein folds, improving the predictive performance of MV-fold. Then, MV-fold was combined with two template-based methods: HHblits and HMMER. The ensemble method is called MT-fold incorporating the advantages of both discriminative methods and template-based methods. Experimental results on five widely used benchmark datasets (DD, RDD, EDD, TG and LE) showed that the proposed methods outperformed some state-of-the-art methods in this field, indicating that MV-fold and MT-fold are useful computational tools for protein fold recognition and protein homology detection and would be efficient tools for protein sequence analysis. Finally, we constructed an update and rigorous benchmark dataset based on SCOPe (version 2.07) to fairly evaluate the performance of the proposed method, and our method achieved stable performance on this new dataset. This new benchmark dataset will become a widely used benchmark dataset to fairly evaluate the performance of different methods for fold recognition.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ke Yan
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Xiaozhao Fang
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Yong Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
39
|
|