1
|
Zhao Y, Po LM, Lin T, Yan Q, Liu W, Xian P. HSGAN: Hyperspectral Reconstruction From RGB Images With Generative Adversarial Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:17137-17150. [PMID: 37561623 DOI: 10.1109/tnnls.2023.3300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Hyperspectral (HS) reconstruction from RGB images denotes the recovery of whole-scene HS information, which has attracted much attention recently. State-of-the-art approaches often adopt convolutional neural networks to learn the mapping for HS reconstruction from RGB images. However, they often do not achieve high HS reconstruction performance across different scenes consistently. In addition, their performance in recovering HS images from clean and real-world noisy RGB images is not consistent. To improve the HS reconstruction accuracy and robustness across different scenes and from different input images, we present an effective HSGAN framework with a two-stage adversarial training strategy. The generator is a four-level top-down architecture that extracts and combines features on multiple scales. To generalize well to real-world noisy images, we further propose a spatial-spectral attention block (SSAB) to learn both spatial-wise and channel-wise relations. We conduct the HS reconstruction experiments from both clean and real-world noisy RGB images on five well-known HS datasets. The results demonstrate that HSGAN achieves superior performance to existing methods. Please visit https://github.com/zhaoyuzhi/HSGAN to try our codes.
Collapse
|
2
|
Liu H, Feng C, Dian R, Li S. SSTF-Unet: Spatial-Spectral Transformer-Based U-Net for High-Resolution Hyperspectral Image Acquisition. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:18222-18236. [PMID: 37738195 DOI: 10.1109/tnnls.2023.3313202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
To obtain a high-resolution hyperspectral image (HR-HSI), fusing a low-resolution hyperspectral image (LR-HSI) and a high-resolution multispectral image (HR-MSI) is a prominent approach. Numerous approaches based on convolutional neural networks (CNNs) have been presented for hyperspectral image (HSI) and multispectral image (MSI) fusion. Nevertheless, these CNN-based methods may ignore the global relevant features from the input image due to the geometric limitations of convolutional kernels. To obtain more accurate fusion results, we provide a spatial-spectral transformer-based U-net (SSTF-Unet). Our SSTF-Unet can capture the association between distant features and explore the intrinsic information of images. More specifically, we use the spatial transformer block (SATB) and spectral transformer block (SETB) to calculate the spatial and spectral self-attention, respectively. Then, SATB and SETB are connected in parallel to form the spatial-spectral fusion block (SSFB). Inspired by the U-net architecture, we build up our SSTF-Unet through stacking several SSFBs for multiscale spatial-spectral feature fusion. Experimental results on public HSI datasets demonstrate that the designed SSTF-Unet achieves better performance than other existing HSI and MSI fusion approaches.
Collapse
|
3
|
Dian R, Shan T, He W, Liu H. Spectral Super-Resolution via Model-Guided Cross-Fusion Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10059-10070. [PMID: 37022225 DOI: 10.1109/tnnls.2023.3238506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spectral super-resolution, which reconstructs a hyperspectral image (HSI) from a single red-green-blue (RGB) image, has acquired more and more attention. Recently, convolution neural networks (CNNs) have achieved promising performance. However, they often fail to simultaneously exploit the imaging model of the spectral super-resolution and complex spatial and spectral characteristics of the HSI. To tackle the above problems, we build a novel cross fusion (CF)-based model-guided network (called SSRNet) for spectral super-resolution. In specific, based on the imaging model, we unfold the spectral super-resolution into the HSI prior learning (HPL) module and imaging model guiding (IMG) module. Instead of just modeling one kind of image prior, the HPL module is composed of two subnetworks with different structures, which can effectively learn the complex spatial and spectral priors of the HSI, respectively. Furthermore, a CF strategy is used to establish the connection between the two subnetworks, which further improves the learning performance of the CNN. The IMG module results in solving a strong convex optimization problem, which adaptively optimizes and merges the two features learned by the HPL module by exploiting the imaging model. The two modules are alternately connected to achieve optimal HSI reconstruction performance. Experiments on both the simulated and real data demonstrate that the proposed method can achieve superior spectral reconstruction results with relatively small model size. The code will be available at https://github.com/renweidian.
Collapse
|
4
|
Yan YJ, Wong WK, Chen CJ, Huang CC, Chien JT, Ou-Yang M. Hyperspectral signature-band extraction and learning: an example of sugar content prediction of Syzygium samarangense. Sci Rep 2023; 13:15100. [PMID: 37699940 PMCID: PMC10497603 DOI: 10.1038/s41598-023-41603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
This study proposes a method to extract the signature bands from the deep learning models of multispectral data converted from the hyperspectral data. The signature bands with two deep-learning models were further used to predict the sugar content of the Syzygium samarangense. Firstly, the hyperspectral data with the bandwidths lower than 2.5 nm were converted to the spectral data with multiple bandwidths higher than 2.5 nm to simulate the multispectral data. The convolution neural network (CNN) and the feedforward neural network (FNN) used these spectral data to predict the sugar content of the Syzygium samarangense and obtained the lowest mean absolute error (MAE) of 0.400° Brix and 0.408° Brix, respectively. Secondly, the absolute mean of the integrated gradient method was used to extract multiple signature bands from the CNN and FNN models for sugariness prediction. A total of thirty sets of six signature bands were selected from the CNN and FNN models, which were trained by using the spectral data with five bandwidths in the visible (VIS), visible to near-infrared (VISNIR), and visible to short-waved infrared (VISWIR) wavelengths ranging from 400 to 700 nm, 400 to 1000 nm, and 400 to 1700 nm. Lastly, these signature-band data were used to train the CNN and FNN models for sugar content prediction. The FNN model using VISWIR signature bands with a bandwidth of ± 12.5 nm had a minimum MAE of 0.390°Brix compared to the others. The CNN model using VISWIR signature bands with a bandwidth of ± 10 nm had the lowest MAE of 0.549° Brix compared to the other CNN models. The MAEs of the models with only six spectral bands were even better than those with tens or hundreds of spectral bands. These results reveal that six signature bands have the potential to be used in a small and compact multispectral device to predict the sugar content of the Syzygium samarangense.
Collapse
Affiliation(s)
- Yung-Jhe Yan
- Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Weng-Keong Wong
- Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Jung Chen
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chi-Cho Huang
- Fengshan Tropical Horticultural Experiment Branch, Kaohsiung, Taiwan
| | - Jen-Tzung Chien
- Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Mang Ou-Yang
- Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Xue Y, Lau VKN. Online Orthogonal Dictionary Learning Based on Frank-Wolfe Method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:5774-5788. [PMID: 34878984 DOI: 10.1109/tnnls.2021.3131181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning. Most existing works on dictionary learning adopt an off-line approach, and there are two main off-line ways of conducting it. One is to alternately optimize both the dictionary and the sparse code, while the other is to optimize the dictionary by restricting it over the orthogonal group. The latter, called orthogonal dictionary learning (ODL), has a lower implementation complexity and, hence, is more favorable for low-cost devices. However, existing schemes for ODL only work with batch data and cannot be implemented online, making them inapplicable for real-time applications. This article, thus, proposes a novel online orthogonal dictionary scheme to dynamically learn the dictionary from streaming data, without storing the historical data. The proposed scheme includes a novel problem formulation and an efficient online algorithm design with convergence analysis. In the problem formulation, we relax the orthogonal constraint to enable an efficient online algorithm. We then propose the design of a new Frank-Wolfe-based online algorithm with a convergence rate of O(lnt/t1/4) . The convergence rate in terms of key system parameters is also derived. Experiments with synthetic data and real-world Internet of things (IoT) sensor readings demonstrate the effectiveness and efficiency of the proposed online ODL scheme.
Collapse
|
6
|
Fan X, Liao M, Xue J, Wu H, Jin L, Zhao J, Zhu L. Joint coupled representation and homogeneous reconstruction for multi-resolution small sample face recognition. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Hyperspectral Image Classification via Deep Structure Dictionary Learning. REMOTE SENSING 2022. [DOI: 10.3390/rs14092266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The construction of diverse dictionaries for sparse representation of hyperspectral image (HSI) classification has been a hot topic over the past few years. However, compared with convolutional neural network (CNN) models, dictionary-based models cannot extract deeper spectral information, which will reduce their performance for HSI classification. Moreover, dictionary-based methods have low discriminative capability, which leads to less accurate classification. To solve the above problems, we propose a deep learning-based structure dictionary for HSI classification in this paper. The core ideas are threefold, as follows: (1) To extract the abundant spectral information, we incorporate deep residual neural networks in dictionary learning and represent input signals in the deep feature domain. (2) To enhance the discriminative ability of the proposed model, we optimize the structure of the dictionary and design sharing constraint in terms of sub-dictionaries. Thus, the general and specific feature of HSI samples can be learned separately. (3) To further enhance classification performance, we design two kinds of loss functions, including coding loss and discriminating loss. The coding loss is used to realize the group sparsity of code coefficients, in which within-class spectral samples can be represented intensively and effectively. The Fisher discriminating loss is used to enforce the sparse representation coefficients with large between-class scatter. Extensive tests performed on hyperspectral dataset with bright prospects prove the developed method to be effective and outperform other existing methods.
Collapse
|
8
|
Chen CJ, Yan YJ, Huang CC, Chien JT, Chu CT, Jang JW, Chen TC, Lin SG, Shih RS, Ou-Yang M. Sugariness prediction of Syzygium samarangense using convolutional learning of hyperspectral images. Sci Rep 2022; 12:2774. [PMID: 35177733 PMCID: PMC8854712 DOI: 10.1038/s41598-022-06679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
Sugariness is one of the most important indicators to measure the quality of Syzygium samarangense, which is also known as the wax apple. In general, farmers used to measure sugariness by testing the extracted juice of the wax apple products. Such a destructive way to measure sugariness is not only labor-consuming but also wasting products. Therefore, non-destructive and quick techniques for measuring sugariness would be significant for wax apple supply chains. Traditionally, the non-destructive method to predict the sugariness or the other indicators of the fruits was based on the reflectance spectra or Hyperspectral Images (HSIs) using linear regression such as Multi-Linear Regression (MLR), Principal Component Regression (PCR), and Partial Least Square Regression (PLSR), etc. However, these regression methods are usually too simple to precisely estimate the complicated mapping between the reflectance spectra or HSIs and the sugariness. This study presents the deep learning methods for sugariness prediction using the reflectance spectra or HSIs from the bottom of the wax apple. A non-destructive imaging system fabricated with two spectrum sensors and light sources is implemented to acquire the visible and infrared lights with a range of wavelengths. In particular, a specialized Convolutional Neural Network (CNN) with hyperspectral imaging is proposed by investigating the effect of different wavelength bands for sugariness prediction. Rather than extracting spatial features, the proposed CNN model was designed to extract spectral features of HSIs. In the experiments, the ground-truth value of sugariness is obtained from a commercial refractometer. The experimental results show that using the whole band range between 400 and 1700 nm achieves the best performance in terms of °Brix error. CNN models attain the °Brix error of ± 0.552, smaller than ± 0.597 using Feedforward Neural Network (FNN). Significantly, the CNN’s test results show that the minor error in the interval 0 to 10°Brix and 10 to 11°Brix are ± 0.551 and ± 0.408, these results indicate that the model would have the capability to predict if sugariness is below 10°Brix or not, which would be similar to the human tongue. These results are much better than ± 1.441 and ± 1.379 by using PCR and PLSR, respectively. Moreover, this study provides the test error in each °Brix interval within one Brix, and the results show that the test error is varied considerably within different °Brix intervals, especially on PCR and PLSR. On the other hand, FNN and CNN obtain robust results in terms of test error.
Collapse
Affiliation(s)
- Chih-Jung Chen
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yung-Jhe Yan
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chi-Cho Huang
- Fengshan Tropical Horticultural Experiment Branch, Kaohsiung, Taiwan
| | | | - Chang-Ting Chu
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Je-Wei Jang
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | - Mang Ou-Yang
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
9
|
Zhang L, Nie J, Wei W, Li Y, Zhang Y. Deep Blind Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2388-2400. [PMID: 32639931 DOI: 10.1109/tnnls.2020.3005234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The production of a high spatial resolution (HR) hyperspectral image (HSI) through the fusion of a low spatial resolution (LR) HSI with an HR multispectral image (MSI) has underpinned much of the recent progress in HSI super-resolution. The premise of these signs of progress is that both the degeneration from the HR HSI to LR HSI in the spatial domain and the degeneration from the HR HSI to HR MSI in the spectral domain are assumed to be known in advance. However, such a premise is difficult to achieve in practice. To address this problem, we propose to incorporate degeneration estimation into HSI super-resolution and present an unsupervised deep framework for "blind" HSIs super-resolution where the degenerations in both domains are unknown. In this framework, we model the latent HR HSI and the unknown degenerations with deep network structures to regularize them instead of using handcrafted (or shallow) priors. Specifically, we generate the latent HR HSI with an image-specific generator network and structure the degenerations in spatial and spectral domains through a convolution layer and a fully connected layer, respectively. By doing this, the proposed framework can be formulated as an end-to-end deep network learning problem, which is purely supervised by those two input images (i.e., LR HSI and HR MSI) and can be effectively solved by the backpropagation algorithm. Experiments on both natural scene and remote sensing HSI data sets show the superior performance of the proposed method in coping with unknown degeneration either in the spatial domain, spectral domain, or even both of them.
Collapse
|
10
|
Fu X, Wang W, Huang Y, Ding X, Paisley J. Deep Multiscale Detail Networks for Multiband Spectral Image Sharpening. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2090-2104. [PMID: 32484781 DOI: 10.1109/tnnls.2020.2996498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We introduce a new deep detail network architecture with grouped multiscale dilated convolutions to sharpen images contain multiband spectral information. Specifically, our end-to-end network directly fuses low-resolution multispectral and panchromatic inputs to produce high-resolution multispectral results, which is the same goal of the pansharpening in remote sensing. The proposed network architecture is designed by utilizing our domain knowledge and considering the two aims of the pansharpening: spectral and spatial preservations. For spectral preservation, the up-sampled multispectral images are directly added to the output for lossless spectral information propagation. For spatial preservation, we train the proposed network in the high-frequency domain instead of the commonly used image domain. Different from conventional network structures, we remove pooling and batch normalization layers to preserve spatial information and improve generalization to new satellites, respectively. To effectively and efficiently obtain multiscale contextual features at a fine-grained level, we propose a grouped multiscale dilated network structure to enlarge the receptive fields for each network layer. This structure allows the network to capture multiscale representations without increasing the parameter burden and network complexity. These representations are finally utilized to reconstruct the residual images which contain spatial details of PAN. Our trained network is able to generalize different satellite images without the need for parameter tuning. Moreover, our model is a general framework, which can be directly used for other kinds of multiband spectral image sharpening, e.g., hyperspectral image sharpening. Experiments show that our model performs favorably against compared methods in terms of both qualitative and quantitative qualities.
Collapse
|
11
|
Dian R, Li S, Kang X. Regularizing Hyperspectral and Multispectral Image Fusion by CNN Denoiser. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:1124-1135. [PMID: 32310788 DOI: 10.1109/tnnls.2020.2980398] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hyperspectral image (HSI) and multispectral image (MSI) fusion, which fuses a low-spatial-resolution HSI (LR-HSI) with a higher resolution multispectral image (MSI), has become a common scheme to obtain high-resolution HSI (HR-HSI). This article presents a novel HSI and MSI fusion method (called as CNN-Fus), which is based on the subspace representation and convolutional neural network (CNN) denoiser, i.e., a well-trained CNN for gray image denoising. Our method only needs to train the CNN on the more accessible gray images and can be directly used for any HSI and MSI data sets without retraining. First, to exploit the high correlations among the spectral bands, we approximate the desired HR-HSI with the low-dimensional subspace multiplied by the coefficients, which can not only speed up the algorithm but also lead to more accurate recovery. Since the spectral information mainly exists in the LR-HSI, we learn the subspace from it via singular value decomposition. Due to the powerful learning performance and high speed of CNN, we use the well-trained CNN for gray image denoising to regularize the estimation of coefficients. Specifically, we plug the CNN denoiser into the alternating direction method of multipliers (ADMM) algorithm to estimate the coefficients. Experiments demonstrate that our method has superior performance over the state-of-the-art fusion methods.
Collapse
|
12
|
Wei K, Fu Y, Huang H. 3-D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:363-375. [PMID: 32217487 DOI: 10.1109/tnnls.2020.2978756] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, we propose an alternating directional 3-D quasi-recurrent neural network for hyperspectral image (HSI) denoising, which can effectively embed the domain knowledge-structural spatiospectral correlation and global correlation along spectrum (GCS). Specifically, 3-D convolution is utilized to extract structural spatiospectral correlation in an HSI, while a quasi-recurrent pooling function is employed to capture the GCS. Moreover, the alternating directional structure is introduced to eliminate the causal dependence with no additional computation cost. The proposed model is capable of modeling spatiospectral dependence while preserving the flexibility toward HSIs with an arbitrary number of bands. Extensive experiments on HSI denoising demonstrate significant improvement over the state-of-the-art under various noise settings, in terms of both restoration accuracy and computation time. Our code is available at https://github.com/Vandermode/QRNN3D.
Collapse
|
13
|
Gong Z, Zhong P, Hu W. Statistical Loss and Analysis for Deep Learning in Hyperspectral Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:322-333. [PMID: 32203036 DOI: 10.1109/tnnls.2020.2978577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nowadays, deep learning methods, especially the convolutional neural networks (CNNs), have shown impressive performance on extracting abstract and high-level features from the hyperspectral image. However, the general training process of CNNs mainly considers the pixelwise information or the samples' correlation to formulate the penalization while ignores the statistical properties especially the spectral variability of each class in the hyperspectral image. These sample-based penalizations would lead to the uncertainty of the training process due to the imbalanced and limited number of training samples. To overcome this problem, this article characterizes each class from the hyperspectral image as a statistical distribution and further develops a novel statistical loss with the distributions, not directly with samples for deep learning. Based on the Fisher discrimination criterion, the loss penalizes the sample variance of each class distribution to decrease the intraclass variance of the training samples. Moreover, an additional diversity-promoting condition is added to enlarge the interclass variance between different class distributions, and this could better discriminate samples from different classes in the hyperspectral image. Finally, the statistical estimation form of the statistical loss is developed with the training samples through multivariant statistical analysis. Experiments over the real-world hyperspectral images show the effectiveness of the developed statistical loss for deep learning.
Collapse
|
14
|
Jia S, Lin Z, Deng B, Zhu J, Li Q. Cascade Superpixel Regularized Gabor Feature Fusion for Hyperspectral Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:1638-1652. [PMID: 31283512 DOI: 10.1109/tnnls.2019.2921564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A 3-D Gabor wavelet provides an effective way to obtain the spectral-spatial-fused features for hyperspectral image, which has shown advantageous performance for material classification and recognition. In this paper, instead of separately employing the Gabor magnitude and phase features, which, respectively, reflect the intensity and variation of surface materials in local area, a cascade superpixel regularized Gabor feature fusion (CSRGFF) approach has been proposed. First, the Gabor filters with particular orientation are utilized to obtain Gabor features (including magnitude and phase) from the original hyperspectral image. Second, a support vector machine (SVM)-based probability representation strategy is developed to fully exploit the decision information in SVM output, and the achieved confidence score can make the following fusion with Gabor phase more effective. Meanwhile, the quadrant bit coding and Hamming distance metric are applied to encode the Gabor phase features and measure sample similarity in sequence. Third, the carefully defined characteristics of two kinds of features are directly combined together without any weighting operation to describe the weight of samples belonging to each class. Finally, a series of superpixel graphs extracted from the raw hyperspectral image with different numbers of superpixels are employed to successively regularize the weighting cube from over-segmentation to under-segmentation, and the classification performance gradually improves with the decrease in the number of superpixels in the regularization procedure. Four widely used real hyperspectral images have been conducted, and the experimental results constantly demonstrate the superiority of our CSRGFF approach over several state-of-the-art methods.
Collapse
|
15
|
Lagrange A, Fauvel M, May S, Bioucas-Dias J, Dobigeon N. Matrix cofactorization for joint representation learning and supervised classification – Application to hyperspectral image analysis. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.12.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Li Z, Zhang Z, Qin J, Zhang Z, Shao L. Discriminative Fisher Embedding Dictionary Learning Algorithm for Object Recognition. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:786-800. [PMID: 31056524 DOI: 10.1109/tnnls.2019.2910146] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Both interclass variances and intraclass similarities are crucial for improving the classification performance of discriminative dictionary learning (DDL) algorithms. However, existing DDL methods often ignore the combination between the interclass and intraclass properties of dictionary atoms and coding coefficients. To address this problem, in this paper, we propose a discriminative Fisher embedding dictionary learning (DFEDL) algorithm that simultaneously establishes Fisher embedding models on learned atoms and coefficients. Specifically, we first construct a discriminative Fisher atom embedding model by exploring the Fisher criterion of the atoms, which encourages the atoms of the same class to reconstruct the corresponding training samples as much as possible. At the same time, a discriminative Fisher coefficient embedding model is formulated by imposing the Fisher criterion on the profiles (row vectors of the coding coefficient matrix) and coding coefficients, which forces the coding coefficient matrix to become a block-diagonal matrix. Since the profiles can indicate which training samples are represented by the corresponding atoms, the proposed two discriminative Fisher embedding models can alternatively and interactively promote the discriminative capabilities of the learned dictionary and coding coefficients. The extensive experimental results demonstrate that the proposed DFEDL algorithm achieves superior performance in comparison with some state-of-the-art dictionary learning algorithms on both hand-crafted and deep learning-based features.
Collapse
|
17
|
Akhtar N, Mian A. Hyperspectral Recovery from RGB Images using Gaussian Processes. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2020; 42:100-113. [PMID: 30295614 DOI: 10.1109/tpami.2018.2873729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose to recover spectral details from RGB images of known spectral quantization by modeling natural spectra under Gaussian Processes and combining them with the RGB images. Our technique exploits Process Kernels to model the relative smoothness of reflectance spectra, and encourages non-negativity in the resulting signals for better estimation of the reflectance values. The Gaussian Processes are inferred in sets using clusters of spatio-spectrally correlated hyperspectral training patches. Each set is transformed to match the spectral quantization of the test RGB image. We extract overlapping patches from the RGB image and match them to the hyperspectral training patches by spectrally transforming the latter. The RGB patches are encoded over the transformed Gaussian Processes related to those hyperspectral patches and the resulting image is constructed by combining the codes with the original processes. Our approach infers the desired Gaussian Processes under a fully Bayesian model inspired by Beta-Bernoulli Process, for which we also present the inference procedure. A thorough evaluation using three hyperspectral datasets demonstrates the effective extraction of spectral details from RGB images by the proposed technique.
Collapse
|
18
|
Zhong P, Gong Z, Shan J. Multiple Instance Learning for Multiple Diverse Hyperspectral Target Characterizations. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:246-258. [PMID: 30892253 DOI: 10.1109/tnnls.2019.2900465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A practical hyperspectral target characterization task estimates a target signature from imprecisely labeled training data. The imprecisions arise from the characteristics of the real-world tasks. First, accurate pixel-level labels on training data are often unavailable. Second, the subpixel targets and occluded targets cause the training samples to contain mixed data and multiple target types. To address these imprecisions, this paper proposes a new hyperspectral target characterization method to produce diverse multiple hyperspectral target signatures under a multiple instance learning (MIL) framework. The proposed method uses only bag-level training samples and labels, which solves the problems arising from the mixed data and lack of pixel-level labels. Moreover, by formulating a multiple characterization MIL and including a diversity-promoting term, the proposed method can learn a set of diverse target signatures, which solves the problems arising from multiple target types in training samples. The experiments on hyperspectral target detections using the learned multiple target signatures over synthetic and real-world data show the effectiveness of the proposed method.
Collapse
|
19
|
Dian R, Li S, Fang L. Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2672-2683. [PMID: 30624229 DOI: 10.1109/tnnls.2018.2885616] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyperspectral images (HSIs) with high spectral resolution only have the low spatial resolution. On the contrary, multispectral images (MSIs) with much lower spectral resolution can be obtained with higher spatial resolution. Therefore, fusing the high-spatial-resolution MSI (HR-MSI) with low-spatial-resolution HSI of the same scene has become the very popular HSI super-resolution scheme. In this paper, a novel low tensor-train (TT) rank (LTTR)-based HSI super-resolution method is proposed, where an LTTR prior is designed to learn the correlations among the spatial, spectral, and nonlocal modes of the nonlocal similar high-spatial-resolution HSI (HR-HSI) cubes. First, we cluster the HR-MSI cubes as many groups based on their similarities, and the HR-HSI cubes are also clustered according to the learned cluster structure in the HR-MSI cubes. The HR-HSI cubes in each group are much similar to each other and can constitute a 4-D tensor, whose four modes are highly correlated. Therefore, we impose the LTTR constraint on these 4-D tensors, which can effectively learn the correlations among the spatial, spectral, and nonlocal modes because of the well-balanced matricization scheme of TT rank. We formulate the super-resolution problem as TT rank regularized optimization problem, which is solved via the scheme of alternating direction method of multipliers. Experiments on HSI data sets indicate the effectiveness of the LTTR-based method.
Collapse
|
20
|
Peng J, Li L, Tang YY. Maximum Likelihood Estimation-Based Joint Sparse Representation for the Classification of Hyperspectral Remote Sensing Images. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1790-1802. [PMID: 30371395 DOI: 10.1109/tnnls.2018.2874432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A joint sparse representation (JSR) method has shown superior performance for the classification of hyperspectral images (HSIs). However, it is prone to be affected by outliers in the HSI spatial neighborhood. In order to improve the robustness of JSR, we propose a maximum likelihood estimation (MLE)-based JSR (MLEJSR) model, which replaces the traditional quadratic loss function with an MLE-like estimator for measuring the joint approximation error. The MLE-like estimator is actually a function of coding residuals. Given some priors on the coding residuals, the MLEJSR model can be easily converted to an iteratively reweighted JSR problem. Choosing a reasonable weight function, the effect of inhomogeneous neighboring pixels or outliers can be dramatically reduced. We provide a theoretical analysis of MLEJSR from the viewpoint of recovery error and evaluate its empirical performance on three public hyperspectral data sets. Both the theoretical and experimental results demonstrate the effectiveness of our proposed MLEJSR method, especially in the case of large noise.
Collapse
|