• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4697468)   Today's Articles (3277)
For: Chi R, Hou Z, Jin S, Huang B. Computationally Efficient Data-Driven Higher Order Optimal Iterative Learning Control. IEEE Trans Neural Netw Learn Syst 2018;29:5971-5980. [PMID: 29993988 DOI: 10.1109/tnnls.2018.2814628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Number Cited by Other Article(s)
1
Hou R, Jia L, Bu X, Zhou C. Dynamic Neural Network Predictive Compensation-Based Point-to-Point Iterative Learning Control With Nonuniform Batch Length. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:13005-13016. [PMID: 37141053 DOI: 10.1109/tnnls.2023.3265930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
2
Cheng X, Jiang H, Shen D. A Novel Accelerated Multistage Learning Control Mechanism via Virtual Performance Reduction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:6338-6352. [PMID: 36264721 DOI: 10.1109/tnnls.2022.3212766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
3
Zhang Y, Lin Q, Du W, Qian F. Data-Driven Tabulation for Chemistry Integration Using Recurrent Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:5392-5402. [PMID: 35657848 DOI: 10.1109/tnnls.2022.3175301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
4
Zhou Y, Gao K, Tang X, Hu H, Li D, Gao F. Conic Input Mapping Design of Constrained Optimal Iterative Learning Controller for Uncertain Systems. IEEE TRANSACTIONS ON CYBERNETICS 2023;53:1843-1855. [PMID: 35316201 DOI: 10.1109/tcyb.2022.3155754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
5
Shen D, Huo N, Saab SS. A Probabilistically Quantized Learning Control Framework for Networked Linear Systems. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:7559-7573. [PMID: 34129506 DOI: 10.1109/tnnls.2021.3085559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
6
Zhou Y, Cao Z, Lu J, Zhao C, Li D, Gao F. Objectives, challenges, and prospects of batch processes: Arising from injection molding applications. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
7
Meng D, Zhang J. Design and Analysis of Data-Driven Learning Control: An Optimization-Based Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:5527-5541. [PMID: 33877987 DOI: 10.1109/tnnls.2021.3070920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
8
Sang S, Zhang R, Lin X. Model-Free Adaptive Iterative Learning Bipartite Containment Control for Multi-Agent Systems. SENSORS (BASEL, SWITZERLAND) 2022;22:7115. [PMID: 36236210 PMCID: PMC9572864 DOI: 10.3390/s22197115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
9
Chi R, Hui Y, Huang B, Hou Z, Bu X. Data-Driven Adaptive Consensus Learning From Network Topologies. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:3487-3497. [PMID: 33556018 DOI: 10.1109/tnnls.2021.3053186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
10
Xu L, Zhong W, Lu J, Gao F, Qian F, Cao Z. Learning of Iterative Learning Control for Flexible Manufacturing of Batch Processes. ACS OMEGA 2022;7:19939-19947. [PMID: 35721960 PMCID: PMC9202061 DOI: 10.1021/acsomega.2c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
11
Chi R, Zhang H, Huang B, Hou Z. Quantitative Data-Driven Adaptive Iterative Learning Control: From Trajectory Tracking to Point-to-Point Tracking. IEEE TRANSACTIONS ON CYBERNETICS 2022;52:4859-4873. [PMID: 33095722 DOI: 10.1109/tcyb.2020.3015233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
12
Song F, Liu Y, Jin W, Tan J, He W. Data-Driven Feedforward Learning With Force Ripple Compensation for Wafer Stages: A Variable-Gain Robust Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:1594-1608. [PMID: 33373303 DOI: 10.1109/tnnls.2020.3042975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
13
Chi R, Hui Y, Huang B, Hou Z, Bu X. Spatial Linear Dynamic Relationship of Strongly Connected Multiagent Systems and Adaptive Learning Control for Different Formations. IEEE TRANSACTIONS ON CYBERNETICS 2022;52:531-543. [PMID: 32287030 DOI: 10.1109/tcyb.2020.2977391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
14
Meng D, Zhang J. Convergence Analysis of Robust Iterative Learning Control Against Nonrepetitive Uncertainties: System Equivalence Transformation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:3867-3879. [PMID: 32841124 DOI: 10.1109/tnnls.2020.3016057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
15
Ma L, Liu X, Kong X, Lee KY. Iterative Learning Model Predictive Control Based on Iterative Data-Driven Modeling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:3377-3390. [PMID: 32857701 DOI: 10.1109/tnnls.2020.3016295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
16
Yu X, Hou Z, Polycarpou MM, Duan L. Data-Driven Iterative Learning Control for Nonlinear Discrete-Time MIMO Systems. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021;32:1136-1148. [PMID: 32287017 DOI: 10.1109/tnnls.2020.2980588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
17
A periodic iterative learning scheme for finite-iteration tracking of discrete networks based on FlexRay communication protocol. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
18
Chi R, Hui Y, Huang B, Hou Z. Adjacent-Agent Dynamic Linearization-Based Iterative Learning Formation Control. IEEE TRANSACTIONS ON CYBERNETICS 2020;50:4358-4369. [PMID: 30869635 DOI: 10.1109/tcyb.2019.2899654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
19
Huang D, Chen C, Huang T, Zhao D, Tang Q. An Active Repetitive Learning Control Method for Lateral Suspension Systems of High-Speed Trains. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:4094-4103. [PMID: 31831447 DOI: 10.1109/tnnls.2019.2952175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
20
Zhang J, Meng D. Convergence Analysis of Saturated Iterative Learning Control Systems With Locally Lipschitz Nonlinearities. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:4025-4035. [PMID: 31899433 DOI: 10.1109/tnnls.2019.2951752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
21
Shen D, Qu G. Performance Enhancement of Learning Tracking Systems Over Fading Channels With Multiplicative and Additive Randomness. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:1196-1210. [PMID: 31247569 DOI: 10.1109/tnnls.2019.2919510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
22
Hui Y, Chi R, Huang B, Hou Z. 3-D Learning-Enhanced Adaptive ILC for Iteration-Varying Formation Tasks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:89-99. [PMID: 30892243 DOI: 10.1109/tnnls.2019.2899632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
23
Meng D. Convergence Conditions for Solving Robust Iterative Learning Control Problems Under Nonrepetitive Model Uncertainties. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019;30:1908-1919. [PMID: 30403639 DOI: 10.1109/tnnls.2018.2874977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
24
Combination of Data-Driven Active Disturbance Rejection and Takagi-Sugeno Fuzzy Control with Experimental Validation on Tower Crane Systems. ENERGIES 2019. [DOI: 10.3390/en12081548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA