1
|
Liu W, Kang X, Duan P, Xie Z, Wei X, Li S. SOSNet: Real-Time Small Object Segmentation via Hierarchical Decoding and Example Mining. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:3071-3083. [PMID: 38090866 DOI: 10.1109/tnnls.2023.3338732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Real-time semantic segmentation plays an important role in auto vehicles. However, most real-time small object segmentation methods fail to obtain satisfactory performance on small objects, such as cars and sign symbols, since the large objects usually tend to devote more to the segmentation result. To solve this issue, we propose an efficient and effective architecture, termed small objects segmentation network (SOSNet), to improve the segmentation performance of small objects. The SOSNet works from two perspectives: methodology and data. Specifically, with the former, we propose a dual-branch hierarchical decoder (DBHD) which is viewed as a small-object sensitive segmentation head. The DBHD consists of a top segmentation head that predicts whether the pixels belong to a small object class and a bottom one that estimates the pixel class. In this situation, the latent correlation among small objects can be fully explored. With the latter, we propose a small object example mining (SOEM) algorithm for balancing examples between small objects and large objects automatically. The core idea of the proposed SOEM is that most of the hard examples on small-object classes are reserved for training while most of the easy examples on large-object classes are banned. Experiments on three commonly used datasets show that the proposed SOSNet architecture greatly improves the accuracy compared to the existing real-time semantic segmentation methods while keeping efficiency. The code will be available at https://github.com/StuLiu/SOSNet.
Collapse
|
2
|
Ali MJ, Essaid M, Moalic L, Idoumghar L. A review of AutoML optimization techniques for medical image applications. Comput Med Imaging Graph 2024; 118:102441. [PMID: 39489100 DOI: 10.1016/j.compmedimag.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Automatic analysis of medical images using machine learning techniques has gained significant importance over the years. A large number of approaches have been proposed for solving different medical image analysis tasks using machine learning and deep learning approaches. These approaches are quite effective thanks to their ability to analyze large volume of medical imaging data. Moreover, they can also identify patterns that may be difficult for human experts to detect. Manually designing and tuning the parameters of these algorithms is a challenging and time-consuming task. Furthermore, designing a generalized model that can handle different imaging modalities is difficult, as each modality has specific characteristics. To solve these problems and automate the whole pipeline of different medical image analysis tasks, numerous Automatic Machine Learning (AutoML) techniques have been proposed. These techniques include Hyper-parameter Optimization (HPO), Neural Architecture Search (NAS), and Automatic Data Augmentation (ADA). This study provides an overview of several AutoML-based approaches for different medical imaging tasks in terms of optimization search strategies. The usage of optimization techniques (evolutionary, gradient-based, Bayesian optimization, etc.) is of significant importance for these AutoML approaches. We comprehensively reviewed existing AutoML approaches, categorized them, and performed a detailed analysis of different proposed approaches. Furthermore, current challenges and possible future research directions are also discussed.
Collapse
Affiliation(s)
| | - Mokhtar Essaid
- Université de Haute-Alsace, IRIMAS UR7499, Mulhouse, 68100, France.
| | - Laurent Moalic
- Université de Haute-Alsace, IRIMAS UR7499, Mulhouse, 68100, France.
| | | |
Collapse
|
3
|
Wang T, Li H, Zheng Y, Sun Q. One-Click-Based Perception for Interactive Image Segmentation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:13975-13989. [PMID: 37204953 DOI: 10.1109/tnnls.2023.3274127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Existing deep learning-based interactive image segmentation methods have significantly reduced the user's interaction burden with simple click interactions. However, they still require excessive numbers of clicks to continuously correct the segmentation for satisfactory results. This article explores how to harvest accurate segmentation of interested targets while minimizing the user interaction cost. To achieve the above goal, we propose a one-click-based interactive segmentation approach in this work. For this particularly challenging problem in the interactive segmentation task, we build a top-down framework dividing the original problem into a one-click-based coarse localization followed by a fine segmentation. A two-stage interactive object localization network is first designed, which aims to completely enclose the target of interest based on the supervision of object integrity (OI). Click centrality (CC) is also utilized to overcome the overlapping problem between objects. This coarse localization helps to reduce the search space and increase the focus of the click at a higher resolution. A principled multilayer segmentation network is then designed by a progressive layer-by-layer structure, which aims to accurately perceive the target with extremely limited prior guidance. A diffusion module is also designed to enhance the information flow between layers. Besides, the proposed model can be naturally extended to multiobject segmentation task. Our method achieves the state-of-the-art performance under one-click interaction on several benchmarks.
Collapse
|
4
|
Lin Q, Tan W, Cai S, Yan B, Li J, Zhong Y. Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:11142-11156. [PMID: 37028330 DOI: 10.1109/tnnls.2023.3248804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lesions of early cancers often show flat, small, and isochromatic characteristics in medical endoscopy images, which are difficult to be captured. By analyzing the differences between the internal and external features of the lesion area, we propose a lesion-decoupling-based segmentation (LDS) network for assisting early cancer diagnosis. We introduce a plug-and-play module called self-sampling similar feature disentangling module (FDM) to obtain accurate lesion boundaries. Then, we propose a feature separation loss (FSL) function to separate pathological features from normal ones. Moreover, since physicians make diagnoses with multimodal data, we propose a multimodal cooperative segmentation network with two different modal images as input: white-light images (WLIs) and narrowband images (NBIs). Our FDM and FSL show a good performance for both single-modal and multimodal segmentations. Extensive experiments on five backbones prove that our FDM and FSL can be easily applied to different backbones for a significant lesion segmentation accuracy improvement, and the maximum increase of mean Intersection over Union (mIoU) is 4.58. For colonoscopy, we can achieve up to mIoU of 91.49 on our Dataset A and 84.41 on the three public datasets. For esophagoscopy, mIoU of 64.32 is best achieved on the WLI dataset and 66.31 on the NBI dataset.
Collapse
|
5
|
Bougourzi F, Dornaika F, Distante C, Taleb-Ahmed A. D-TrAttUnet: Toward hybrid CNN-transformer architecture for generic and subtle segmentation in medical images. Comput Biol Med 2024; 176:108590. [PMID: 38763066 DOI: 10.1016/j.compbiomed.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Over the past two decades, machine analysis of medical imaging has advanced rapidly, opening up significant potential for several important medical applications. As complicated diseases increase and the number of cases rises, the role of machine-based imaging analysis has become indispensable. It serves as both a tool and an assistant to medical experts, providing valuable insights and guidance. A particularly challenging task in this area is lesion segmentation, a task that is challenging even for experienced radiologists. The complexity of this task highlights the urgent need for robust machine learning approaches to support medical staff. In response, we present our novel solution: the D-TrAttUnet architecture. This framework is based on the observation that different diseases often target specific organs. Our architecture includes an encoder-decoder structure with a composite Transformer-CNN encoder and dual decoders. The encoder includes two paths: the Transformer path and the Encoders Fusion Module path. The Dual-Decoder configuration uses two identical decoders, each with attention gates. This allows the model to simultaneously segment lesions and organs and integrate their segmentation losses. To validate our approach, we performed evaluations on the Covid-19 and Bone Metastasis segmentation tasks. We also investigated the adaptability of the model by testing it without the second decoder in the segmentation of glands and nuclei. The results confirmed the superiority of our approach, especially in Covid-19 infections and the segmentation of bone metastases. In addition, the hybrid encoder showed exceptional performance in the segmentation of glands and nuclei, solidifying its role in modern medical image analysis.
Collapse
Affiliation(s)
- Fares Bougourzi
- Junia, UMR 8520, CNRS, Centrale Lille, University of Polytechnique Hauts-de-France, 59000 Lille, France.
| | - Fadi Dornaika
- University of the Basque Country UPV/EHU, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Cosimo Distante
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, 73100 Lecce, Italy.
| | - Abdelmalik Taleb-Ahmed
- Université Polytechnique Hauts-de-France, Université de Lille, CNRS, Valenciennes, 59313, Hauts-de-France, France.
| |
Collapse
|
6
|
Zhou Y, Hu B, Yuan X, Huang K, Yi Z, Yen GG. Multiobjective Evolutionary Generative Adversarial Network Compression for Image Translation. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2024; 28:798-809. [DOI: 10.1109/tevc.2023.3261135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Affiliation(s)
- Yao Zhou
- College of Computer Science, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianglei Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Kaide Huang
- College of Computer Science, Sichuan University, Chengdu, China
| | - Zhang Yi
- College of Computer Science, Sichuan University, Chengdu, China
| | - Gary G. Yen
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
7
|
López-Varela E, de Moura J, Novo J, Fernández-Vigo JI, Moreno-Morillo FJ, García-Feijóo J, Ortega M. Evolutionary multi-target neural network architectures for flow void analysis in optical coherence tomography angiography. Appl Soft Comput 2024; 153:111304. [DOI: 10.1016/j.asoc.2024.111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Li N, Ma L, Yu G, Xue B, Zhang M, Jin Y. Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues. ACM COMPUTING SURVEYS 2024; 56:1-34. [DOI: 10.1145/3603704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 05/31/2023] [Indexed: 01/04/2025]
Abstract
Over recent years, there has been a rapid development of deep learning (DL) in both industry and academia fields. However, finding the optimal hyperparameters of a DL model often needs high computational cost and human expertise. To mitigate the above issue, evolutionary computation (EC) as a powerful heuristic search approach has shown significant merits in the automated design of DL models, so-called evolutionary deep learning (EDL). This article aims to analyze EDL from the perspective of automated machine learning (AutoML). Specifically, we first illuminate EDL from DL and EC and regard EDL as an optimization problem. According to the DL pipeline, we systematically introduce EDL methods ranging from data preparation, model generation, to model deployment with a new taxonomy (i.e., what and how to evolve/optimize), and focus on the discussions of solution representation and search paradigm in handling the optimization problem by EC. Finally, key applications, open issues, and potentially promising lines of future research are suggested. This survey has reviewed recent developments of EDL and offers insightful guidelines for the development of EDL.
Collapse
Affiliation(s)
- Nan Li
- Northeastern University, China
| | | | - Guo Yu
- Nanjing Tech University, China
| | - Bing Xue
- Victoria University of Wellington, New Zealand
| | | | | |
Collapse
|
9
|
Nasrnia B, Falahat R, Kadkhodaie A, Vijouyeh AG. A committee machine-based estimation of shear velocity log by combining intelligent systems and rock-physics model using metaheuristic algorithms. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2023; 126:106821. [DOI: 10.1016/j.engappai.2023.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Wang J, Suo R, Zhou Y. ML R-CNN: A Location-Aware Network for Tooth Instance Segmentation. PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING 2023:1-5. [DOI: 10.1145/3604078.3604097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Jiajun Wang
- College of Software Engineering, Sichuan University, China
| | - Ruiyu Suo
- College of Physics, Sichuan University, China
| | - Yao Zhou
- College of Computer Science, Sichuan University, China
| |
Collapse
|
11
|
Jiang P, Xue Y, Neri F. Convolutional neural network pruning based on multi-objective feature map selection for image classification. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Wang J, Cui Z, Jiang T, Cao C, Cao Z. Lightweight Deep Neural Networks for Ship Target Detection in SAR Imagery. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:565-579. [PMID: 37015502 DOI: 10.1109/tip.2022.3231126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In recent years, deep convolutional neural networks (DCNNs) have been widely used in the task of ship target detection in synthetic aperture radar (SAR) imagery. However, the vast storage and computational cost of DCNN limits its application to spaceborne or airborne onboard devices with limited resources. In this paper, a set of lightweight detection networks for SAR ship target detection are proposed. To obtain these lightweight networks, this paper designs a network structure optimization algorithm based on the multi-objective firefly algorithm (termed NOFA). In our design, the NOFA algorithm encodes the filters of a well-performing ship target detection network into a list of probabilities, which will determine whether the lightweight network will inherit the corresponding filter structure and parameters. After that, the multi-objective firefly optimization algorithm (MFA) continuously optimizes the probability list and finally outputs a set of lightweight network encodings that can meet the different needs of the trade-off between detection network precision and size. Finally, the network pruning technology transforms the encoding that meets the task requirements into a lightweight ship target detection network. The experiments on SSDD and SDCD datasets prove that the method proposed in this paper can provide more flexible and lighter detection networks than traditional detection networks.
Collapse
|
13
|
Liu XF, Zhan ZH, Zhang J. Resource-Aware Distributed Differential Evolution for Training Expensive Neural-Network-Based Controller in Power Electronic Circuit. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:6286-6296. [PMID: 33961568 DOI: 10.1109/tnnls.2021.3075205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The neural-network (NN)-based control method is a new emerging promising technique for controller design in a power electronic circuit (PEC). However, the optimization of NN-based controllers (NNCs) has significant challenges in two aspects. The first challenge is that the search space of the NNC optimization problem is such complex that the global optimization ability of the existing algorithms still needs to be improved. The second challenge is that the training process of the NNC parameters is very computationally expensive and requires a long execution time. Thus, in this article, we develop a powerful evolutionary computation-based algorithm to find a high-quality solution and reduce computational time. First, the differential evolution (DE) algorithm is adopted because it is a powerful global optimizer in solving a complex optimization problem. This can help to overcome the premature convergence in local optima to train the NNC parameters well. Second, to reduce the computational time, the DE is extended to distribute DE (DDE) by dispatching all the individuals to different distributed computing resources for parallel computing. Moreover, a resource-aware strategy (RAS) is designed to further efficiently utilize the resources by adaptively dispatching individuals to resources according to the real-time performance of the resources, which can simultaneously concern the computing ability and load state of each resource. Experimental results show that, compared with some other typical evolutionary algorithms, the proposed algorithm can get significantly better solutions within a shorter computational time.
Collapse
|
14
|
Zhou Y, Yen GG, Yi Z. Evolutionary Shallowing Deep Neural Networks at Block Levels. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:4635-4647. [PMID: 33635798 DOI: 10.1109/tnnls.2021.3059529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neural networks have been demonstrated to be trainable even with hundreds of layers, which exhibit remarkable improvement on expressive power and provide significant performance gains in a variety of tasks. However, the prohibitive computational cost has become a severe challenge for deploying them on resource-constrained platforms. Meanwhile, widely adopted deep neural network architectures, for example, ResNets or DenseNets, are manually crafted on benchmark datasets, which hamper their generalization ability to other domains. To cope with these issues, we propose an evolutionary algorithm-based method for shallowing deep neural networks (DNNs) at block levels, which is termed as ESNB. Different from existing studies, ESNB utilizes the ensemble view of block-wise DNNs and employs the multiobjective optimization paradigm to reduce the number of blocks while avoiding performance degradation. It automatically discovers shallower network architectures by pruning less informative blocks, and employs knowledge distillation to recover the performance. Moreover, a novel prior knowledge incorporation strategy is proposed to improve the exploration ability of the evolutionary search process, and a correctness-aware knowledge distillation strategy is designed for better knowledge transferring. Experimental results show that the proposed method can effectively accelerate the inference of DNNs while achieving superior performance when compared with the state-of-the-art competing methods.
Collapse
|
15
|
Magic of 5G Technology and Optimization Methods Applied to Biomedical Devices: A Survey. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Wireless networks have gained significant attention and importance in healthcare as various medical devices such as mobile devices, sensors, and remote monitoring equipment must be connected to communication networks. In order to provide advanced medical treatments to patients, high-performance technologies such as the emerging fifth generation/sixth generation (5G/6G) are required for transferring data to and from medical devices and in addition to their major components developed with improved optimization methods which are substantially needed and embedded in them. Providing intelligent system design is a challenging task in medical applications, as it affects the whole behaviors of medical devices. A critical review of the medical devices and the various optimization methods employed are presented in this paper, to pave the way for designers to develop an apparatus that is applicable in the healthcare industry under 5G technology and future 6G wireless networks.
Collapse
|
16
|
Zhou Y, Yuan X, Zhang X, Liu W, Wu Y, Yen GG, Hu B, Yi Z. Evolutionary Neural Architecture Search for Automatic Esophageal Lesion Identification and Segmentation. IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2022; 3:436-450. [DOI: 10.1109/tai.2021.3134600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yao Zhou
- Center of Intelligent Medicine, College of Computer Science, Sichuan University, Chengdu, China
| | - Xianglei Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaozhi Zhang
- Center of Intelligent Medicine, College of Computer Science, Sichuan University, Chengdu, China
| | - Wei Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- Center of Intelligent Medicine, College of Computer Science, Sichuan University, Chengdu, China
| | - Gary G. Yen
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Yi
- Center of Intelligent Medicine, College of Computer Science, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
An optimal-score-based filter pruning for deep convolutional neural networks. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
|
19
|
Altameem A, Mallikarjuna B, Saudagar AKJ, Sharma M, Poonia RC. Improvement of Automatic Glioma Brain Tumor Detection Using Deep Convolutional Neural Networks. J Comput Biol 2022; 29:530-544. [PMID: 35235381 DOI: 10.1089/cmb.2021.0280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article introduces automatic brain tumor detection from a magnetic resonance image (MRI). It provides novel algorithms for extracting patches and segmentation trained with Convolutional Neural Network (CNN)'s to identify brain tumors. Further, this study provides deep learning and image segmentation with CNN algorithms. This contribution proposed two similar segmentation algorithms: one for the Higher Grade Gliomas (HGG) and the other for the Lower Grade Gliomas (LGG) for the brain tumor patients. The proposed algorithms (Intensity normalization, Patch extraction, Selecting the best patch, segmentation of HGG, and Segmentation of LGG) identify the gliomas and detect the stage of the tumor as per taking the MRI as input and segmented tumor from the MRIs and elaborated the four algorithms to detect HGG, and segmentation to detect the LGG works with CNN. The segmentation algorithm is compared with different existing algorithms and performs the automatic identification reasonably with high accuracy as per epochs generated with accuracy and loss curves. This article also described how transfer learning has helped extract the image and resolution of the image and increase the segmentation accuracy in the case of LGG patients.
Collapse
Affiliation(s)
- Ayman Altameem
- Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, Riyadh, Saudi Arabia
| | - Basetty Mallikarjuna
- School of Computing Science and Engineering, Galgotias University, Greater Noida, India
| | | | - Meenakshi Sharma
- School of Computing Science and Engineering, Galgotias University, Greater Noida, India
| | | |
Collapse
|
20
|
Chen H, He X, Yang H, Qing L, Teng Q. A Feature-Enriched Deep Convolutional Neural Network for JPEG Image Compression Artifacts Reduction and its Applications. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:430-444. [PMID: 34793307 DOI: 10.1109/tnnls.2021.3124370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The amount of multimedia data, such as images and videos, has been increasing rapidly with the development of various imaging devices and the Internet, bringing more stress and challenges to information storage and transmission. The redundancy in images can be reduced to decrease data size via lossy compression, such as the most widely used standard Joint Photographic Experts Group (JPEG). However, the decompressed images generally suffer from various artifacts (e.g., blocking, banding, ringing, and blurring) due to the loss of information, especially at high compression ratios. This article presents a feature-enriched deep convolutional neural network for compression artifacts reduction (FeCarNet, for short). Taking the dense network as the backbone, FeCarNet enriches features to gain valuable information via introducing multi-scale dilated convolutions, along with the efficient 1 ×1 convolution for lowering both parameter complexity and computation cost. Meanwhile, to make full use of different levels of features in FeCarNet, a fusion block that consists of attention-based channel recalibration and dimension reduction is developed for local and global feature fusion. Furthermore, short and long residual connections both in the feature and pixel domains are combined to build a multi-level residual structure, thereby benefiting the network training and performance. In addition, aiming at reducing computation complexity further, pixel-shuffle-based image downsampling and upsampling layers are, respectively, arranged at the head and tail of the FeCarNet, which also enlarges the receptive field of the whole network. Experimental results show the superiority of FeCarNet over state-of-the-art compression artifacts reduction approaches in terms of both restoration capacity and model complexity. The applications of FeCarNet on several computer vision tasks, including image deblurring, edge detection, image segmentation, and object detection, demonstrate the effectiveness of FeCarNet further.
Collapse
|
21
|
One deep learning local-global model based on CT imaging to differentiate between nodular cryptococcosis and lung cancer which are hard to be diagnosed. Comput Med Imaging Graph 2021; 94:102009. [PMID: 34741847 DOI: 10.1016/j.compmedimag.2021.102009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES We aim to evaluate a deep learning (DL) model and radiomic model for preoperative differentiation of nodular cryptococcosis from solitary lung cancer in patients with malignant features on CT images. MATERIALS AND METHODS We retrospectively recruited 319 patients with solitary pulmonary nodules and suspicious signs of malignancy from three hospitals. All lung nodules were resected, and one by one radiologic-pathologic correlation was performed. A three-dimensional DL model was used for tumor segmentation and extraction of three-dimensional radiomic features. We used the Max-Relevance and Min-Redundancy algorithm and the eXtreme Gradient Boosting algorithm to select the nodular radiomics features. We proposed a DL local-global model, a DL local model and radiomic model to preoperatively differentiate nodular cryptococcosis from solitary lung cancer. The DL local-global model includes information of both nodules and the whole lung, while the DL local model only includes information of solitary lung nodules. Five-fold cross-validation was used to select and validate these models. The prediction performance of the model was evaluated using receiver operating characteristic curve (ROC) and calibration curve. A new loss function was applied in our deep learning framework to optimize the area under the ROC curve (AUC) directly. RESULTS 295 patients were enrolled and they were non-symptomatic, with negative tumor markers and fungus markers in blood tests. These patients have not been diagnosed by the combination of CT imaging, laboratory results and clinical data. The lung volume was slightly larger in patients with lung cancers than that in patients with cryptococcosis (3552.8 ± 1184.6 ml vs 3491.9 ± 1017.8 ml). The DL local-global model achieved the best performance in differentiating between nodular cryptococcosis and lung cancer (area under the curve [AUC] = 0.88), which was higher than that of the DL local model (AUC = 0.84) and radiomic (AUC = 0.79) model. CONCLUSION The DL local-global model is a non-invasive diagnostic tool to differentiate between nodular cryptococcosis and lung cancer nodules which are hard to be diagnosed by the combination of CT imaging, laboratory results and clinical data, and overtreatment may be avoided.
Collapse
|
22
|
|
23
|
Shu Y, Zhang J, Xiao B, Li W. Medical image segmentation based on active fusion-transduction of multi-stream features. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.106950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Paluru N, Dayal A, Jenssen HB, Sakinis T, Cenkeramaddi LR, Prakash J, Yalavarthy PK. Anam-Net: Anamorphic Depth Embedding-Based Lightweight CNN for Segmentation of Anomalies in COVID-19 Chest CT Images. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:932-946. [PMID: 33544680 PMCID: PMC8544939 DOI: 10.1109/tnnls.2021.3054746] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 05/18/2023]
Abstract
Chest computed tomography (CT) imaging has become indispensable for staging and managing coronavirus disease 2019 (COVID-19), and current evaluation of anomalies/abnormalities associated with COVID-19 has been performed majorly by the visual score. The development of automated methods for quantifying COVID-19 abnormalities in these CT images is invaluable to clinicians. The hallmark of COVID-19 in chest CT images is the presence of ground-glass opacities in the lung region, which are tedious to segment manually. We propose anamorphic depth embedding-based lightweight CNN, called Anam-Net, to segment anomalies in COVID-19 chest CT images. The proposed Anam-Net has 7.8 times fewer parameters compared to the state-of-the-art UNet (or its variants), making it lightweight capable of providing inferences in mobile or resource constraint (point-of-care) platforms. The results from chest CT images (test cases) across different experiments showed that the proposed method could provide good Dice similarity scores for abnormal and normal regions in the lung. We have benchmarked Anam-Net with other state-of-the-art architectures, such as ENet, LEDNet, UNet++, SegNet, Attention UNet, and DeepLabV3+. The proposed Anam-Net was also deployed on embedded systems, such as Raspberry Pi 4, NVIDIA Jetson Xavier, and mobile-based Android application (CovSeg) embedded with Anam-Net to demonstrate its suitability for point-of-care platforms. The generated codes, models, and the mobile application are available for enthusiastic users at https://github.com/NaveenPaluru/Segmentation-COVID-19.
Collapse
Affiliation(s)
- Naveen Paluru
- Department of Computational and Data SciencesIndian Institute of ScienceBengaluru560 012India
| | - Aveen Dayal
- Department of Information and Communication TechnologyUniversity of Agder4879GrimstadNorway
| | - Håvard Bjørke Jenssen
- Department of Radiology and Nuclear MedicineOslo University Hospital0372OsloNorway
- Artificial Intelligence AS0553OsloNorway
| | - Tomas Sakinis
- Department of Radiology and Nuclear MedicineOslo University Hospital0372OsloNorway
- Artificial Intelligence AS0553OsloNorway
| | | | - Jaya Prakash
- Department of Instrumentation and Applied PhysicsIndian Institute of ScienceBengaluru560 012India
| | | |
Collapse
|
25
|
Gong M, Liu J, Qin AK, Zhao K, Tan KC. Evolving Deep Neural Networks via Cooperative Coevolution With Backpropagation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:420-434. [PMID: 32217489 DOI: 10.1109/tnnls.2020.2978857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deep neural networks (DNNs), characterized by sophisticated architectures capable of learning a hierarchy of feature representations, have achieved remarkable successes in various applications. Learning DNN's parameters is a crucial but challenging task that is commonly resolved by using gradient-based backpropagation (BP) methods. However, BP-based methods suffer from severe initialization sensitivity and proneness to getting trapped into inferior local optima. To address these issues, we propose a DNN learning framework that hybridizes CC-based optimization with BP-based gradient descent, called BPCC, and implement it by devising a computationally efficient CC-based optimization technique dedicated to DNN parameter learning. In BPCC, BP will intermittently execute for multiple training epochs. Whenever the execution of BP in a training epoch cannot sufficiently decrease the training objective function value, CC will kick in to execute by using the parameter values derived by BP as the starting point. The best parameter values obtained by CC will act as the starting point of BP in its next training epoch. In CC-based optimization, the overall parameter learning task is decomposed into many subtasks of learning a small portion of parameters. These subtasks are individually addressed in a cooperative manner. In this article, we treat neurons as basic decomposition units. Furthermore, to reduce the computational cost, we devise a maturity-based subtask selection strategy to selectively solve some subtasks of higher priority. Experimental results demonstrate the superiority of the proposed method over common-practice DNN parameter learning techniques.
Collapse
|
26
|
Comelli A, Coronnello C, Dahiya N, Benfante V, Palmucci S, Basile A, Vancheri C, Russo G, Yezzi A, Stefano A. Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies. J Imaging 2020; 6:125. [PMID: 34460569 PMCID: PMC8321165 DOI: 10.3390/jimaging6110125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The aim of this work is to identify an automatic, accurate, and fast deep learning segmentation approach, applied to the parenchyma, using a very small dataset of high-resolution computed tomography images of patients with idiopathic pulmonary fibrosis. In this way, we aim to enhance the methodology performed by healthcare operators in radiomics studies where operator-independent segmentation methods must be used to correctly identify the target and, consequently, the texture-based prediction model. METHODS Two deep learning models were investigated: (i) U-Net, already used in many biomedical image segmentation tasks, and (ii) E-Net, used for image segmentation tasks in self-driving cars, where hardware availability is limited and accurate segmentation is critical for user safety. Our small image dataset is composed of 42 studies of patients with idiopathic pulmonary fibrosis, of which only 32 were used for the training phase. We compared the performance of the two models in terms of the similarity of their segmentation outcome with the gold standard and in terms of their resources' requirements. RESULTS E-Net can be used to obtain accurate (dice similarity coefficient = 95.90%), fast (20.32 s), and clinically acceptable segmentation of the lung region. CONCLUSIONS We demonstrated that deep learning models can be efficiently applied to rapidly segment and quantify the parenchyma of patients with pulmonary fibrosis, without any radiologist supervision, in order to produce user-independent results.
Collapse
Affiliation(s)
- Albert Comelli
- Ri.MED Foundation, 90133 Palermo, Italy;
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (V.B.); (G.R.); (A.S.)
| | | | - Navdeep Dahiya
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.D.); (A.Y.)
| | - Viviana Benfante
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (V.B.); (G.R.); (A.S.)
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit I, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy; (S.P.); (A.B.)
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies, Radiology Unit I, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy; (S.P.); (A.B.)
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, 95123 Catania, Italy;
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (V.B.); (G.R.); (A.S.)
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.D.); (A.Y.)
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy; (V.B.); (G.R.); (A.S.)
| |
Collapse
|