• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (729)
For: Jiang X, Zhang L, Lv P, Guo Y, Zhu R, Li Y, Pang Y, Li X, Zhou B, Xu M. Learning Multi-Level Density Maps for Crowd Counting. IEEE Trans Neural Netw Learn Syst 2020;31:2705-2715. [PMID: 31562106 DOI: 10.1109/tnnls.2019.2933920] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Number Cited by Other Article(s)
1
Guo M, Chen B, Yan Z, Wang Y, Ye Q. Virtual Classification: Modulating Domain-Specific Knowledge for Multidomain Crowd Counting. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025;36:2958-2972. [PMID: 38241099 DOI: 10.1109/tnnls.2024.3350363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
2
Wu Y, Li R, Qin Z, Zhao X, Li X. HeightFormer: Explicit Height Modeling Without Extra Data for Camera-Only 3D Object Detection in Bird's Eye View. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2025;34:689-700. [PMID: 39250369 DOI: 10.1109/tip.2024.3427701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
3
Gao J, Huang Z, Lei Y, Shan H, Wang JZ, Wang FY, Zhang J. Deep Rank-Consistent Pyramid Model for Enhanced Crowd Counting. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025;36:299-312. [PMID: 38090870 DOI: 10.1109/tnnls.2023.3336774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
4
Chen Z, Zhang S, Zheng X, Zhao X, Kong Y. Crowd Counting Based on Multiscale Spatial Guided Perception Aggregation Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:17465-17478. [PMID: 37610898 DOI: 10.1109/tnnls.2023.3304348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
5
Zhu J, Zhao W, Yao L, He Y, Hu M, Zhang X, Wang S, Li T, Lu H. Confusion Region Mining for Crowd Counting. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:18039-18051. [PMID: 37713223 DOI: 10.1109/tnnls.2023.3311020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
6
Ma C, Neri F, Gu L, Wang Z, Wang J, Qing A, Wang Y. Crowd Counting Using Meta-Test-Time Adaptation. Int J Neural Syst 2024;34:2450061. [PMID: 39252679 DOI: 10.1142/s0129065724500618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
7
Chen J, Shi X, Zhang H, Li W, Li P, Yao Y, Miyazawa S, Song X, Shibasaki R. MobCovid: Confirmed Cases Dynamics Driven Time Series Prediction of Crowd in Urban Hotspot. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:13397-13410. [PMID: 37200115 DOI: 10.1109/tnnls.2023.3268291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
8
Dong L, Zhang H, Ma J, Xu X, Yang Y, Wu QMJ. CLRNet: A Cross Locality Relation Network for Crowd Counting in Videos. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:6408-6422. [PMID: 36215378 DOI: 10.1109/tnnls.2022.3209918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
9
Lu H, Liu L, Wang H, Cao Z. Counting Crowd by Weighing Counts: A Sequential Decision-Making Perspective. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:5141-5154. [PMID: 36094991 DOI: 10.1109/tnnls.2022.3202652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
10
Luo Y, Lu J, Jiang X, Zhang B. Learning From Architectural Redundancy: Enhanced Deep Supervision in Deep Multipath Encoder-Decoder Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:4271-4284. [PMID: 33587717 DOI: 10.1109/tnnls.2021.3056384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
11
Meng C, Kang C, Lyu L. Hierarchical feature aggregation network with semantic attention for counting large‐scale crowd. INT J INTELL SYST 2022. [DOI: 10.1002/int.23023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
12
Wang Q, Han T, Gao J, Yuan Y. Neuron Linear Transformation: Modeling the Domain Shift for Crowd Counting. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:3238-3250. [PMID: 33502985 DOI: 10.1109/tnnls.2021.3051371] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
13
Zhong X, Qin J, Guo M, Zuo W, Lu W. Offset-decoupled deformable convolution for efficient crowd counting. Sci Rep 2022;12:12229. [PMID: 35851829 PMCID: PMC9293988 DOI: 10.1038/s41598-022-16415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]  Open
14
AutoScale: Learning to Scale for Crowd Counting. Int J Comput Vis 2022. [DOI: 10.1007/s11263-021-01542-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
15
Gao J, Yuan Y, Wang Q. Feature-Aware Adaptation and Density Alignment for Crowd Counting in Video Surveillance. IEEE TRANSACTIONS ON CYBERNETICS 2021;51:4822-4833. [PMID: 33259318 DOI: 10.1109/tcyb.2020.3034316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
16
Yang Y, Li G, Du D, Huang Q, Sebe N. Embedding Perspective Analysis Into Multi-Column Convolutional Neural Network for Crowd Counting. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020;30:1395-1407. [PMID: 33315562 DOI: 10.1109/tip.2020.3043122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
17
Peng S, Wang L, Yin B, Li Y, Xia Y, Hao X. Adaptive weighted crowd receptive field network for crowd counting. Pattern Anal Appl 2020. [DOI: 10.1007/s10044-020-00934-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA