1
|
Fan W, Zhang C, Li H, Jia X, Wang G. Three-Stage Semisupervised Cross-Modal Hashing With Pairwise Relations Exploitation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:260-273. [PMID: 37023166 DOI: 10.1109/tnnls.2023.3263221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hashing methods have sparked a great revolution in cross-modal retrieval due to the low cost of storage and computation. Benefiting from the sufficient semantic information of labeled data, supervised hashing methods have shown better performance compared with unsupervised ones. Nevertheless, it is expensive and labor intensive to annotate the training samples, which restricts the feasibility of supervised methods in real applications. To deal with this limitation, a novel semisupervised hashing method, i.e., three-stage semisupervised hashing (TS3H) is proposed in this article, where both labeled and unlabeled data are seamlessly handled. Different from other semisupervised approaches that learn the pseudolabels, hash codes, and hash functions simultaneously, the new approach is decomposed into three stages as the name implies, in which all of the stages are conducted individually to make the optimization cost-effective and precise. Specifically, the classifiers of different modalities are learned via the provided supervised information to predict the labels of unlabeled data at first. Then, hash code learning is achieved with a simple but efficient scheme by unifying the provided and the newly predicted labels. To capture the discriminative information and preserve the semantic similarities, we leverage pairwise relations to supervise both classifier learning and hash code learning. Finally, the modality-specific hash functions are obtained by transforming the training samples to the generated hash codes. The new approach is compared with the state-of-the-art shallow and deep cross-modal hashing (DCMH) methods on several widely used benchmark databases, and the experiment results verify its efficiency and superiority.
Collapse
|
2
|
Liu H, Zhou W, Zhang H, Li G, Zhang S, Li X. Bit Reduction for Locality-Sensitive Hashing. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:12470-12481. [PMID: 37037245 DOI: 10.1109/tnnls.2023.3263195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Locality-sensitive hashing (LSH) has gained ever-increasing popularity in similarity search for large-scale data. It has competitive search performance when the number of generated hash bits is large, reversely bringing adverse dilemmas for its wide applications. The first purpose of this work is to introduce a novel hash bit reduction schema for hashing techniques to derive shorter binary codes, which has not yet received sufficient concerns. To briefly show how the reduction schema works, the second purpose is to present an effective bit reduction method for LSH under the reduction schema. Specifically, after the hash bits are generated by LSH, they will be put into bit pool as candidates. Then mutual information and data labels are exploited to measure the correlation and structural properties between the hash bits, respectively. Eventually, highly correlated and redundant hash bits can be distinguished and then removed accordingly, without deteriorating the performance greatly. The advantages of our reduction method include that it can not only reduce the number of hash bits effectively but also boost retrieval performance of LSH, making it more appealing and practical in real-world applications. Comprehensive experiments were conducted on three public real-world datasets. The experimental results with representative bit selection methods and the state-of-the-art hashing algorithms demonstrate that the proposed method has encouraging and competitive performance.
Collapse
|
3
|
Tian D, Gong C, Gong M, Wei Y, Feng X. Modeling Cardinality in Image Hashing. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:114-123. [PMID: 34236987 DOI: 10.1109/tcyb.2021.3089879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cardinality constraint, namely, constraining the number of nonzero outputs of models, has been widely used in structural learning. It can be used for modeling the dependencies between multidimensional labels. In hashing, the final outputs are also binary codes, which are similar to multidimensional labels. It has been validated that estimating how many 1's in a multidimensional label vector is easier than directly predicting which elements are 1 and estimating cardinality as a prior step will improve the classification performance. Hence, in this article, we incorporate cardinality constraint into the unsupervised image hashing problem. The proposed model is divided into two steps: 1) estimating the cardinalities of hashing codes and 2) then estimating which bits are 1. Unlike multidimensional labels that are known and fixed in the training phase, the hashing codes are generally learned through an iterative method and, therefore, their cardinalities are unknown and not fixed during the learning procedure. We use a neural network as a cardinality predictor and its parameters are jointly learned with the hashing code generator, which is an autoencoder in our model. The experiments demonstrate the efficiency of our proposed method.
Collapse
|
4
|
Chen J, Zhu X, Liu H. A mutual neighbor-based clustering method and its medical applications. Comput Biol Med 2022; 150:106184. [PMID: 37859282 DOI: 10.1016/j.compbiomed.2022.106184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
Clustering analysis has been widely used in various real-world applications. Due to the simplicity of K-means, it has become the most popular clustering analysis technique in reality. Unfortunately, the performance of K-means heavily relies on initial centers, which should be specified in prior. Besides, it cannot effectively identify manifold clusters. In this paper, we propose a novel clustering algorithm based on representative data objects derived from mutual neighbors to identify different shaped clusters. Specifically, it first obtains mutual neighbors to estimate the density for each data object, and then identifies representative objects with high densities to represent the whole data. Moreover, a concept of path distance, deriving from a minimum spanning tree, is introduced to measure the similarities of representative objects for manifold structures. Finally, an improved K-means with initial centers and path-based distances is proposed to group the representative objects into clusters. For non-representative objects, their cluster labels are determined by neighborhood information. To verify the effectiveness of the proposed method, we conducted comparison experiments on synthetic data and further applied it to medical scenarios. The results show that our clustering method can effectively identify arbitrary-shaped clusters and disease types in comparing to the state-of-the-art clustering ones.
Collapse
Affiliation(s)
- Jun Chen
- Zhejiang Industry Polytechnic College, Shaoxing 312000, PR China.
| | - Xinzhong Zhu
- Zhejiang Normal University, Jinhua 321000, PR China.
| | - Huawen Liu
- Shaoxing University, Shaoxing 312000, PR China.
| |
Collapse
|
5
|
Density-based structural embedding for anomaly detection in dynamic networks. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.05.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Zhou W, Liu H, Lou J, Chen X. Locality sensitive hashing with bit selection. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
An efficient rotational direction heap-based optimization with orthogonal structure for medical diagnosis. Comput Biol Med 2022; 146:105563. [PMID: 35551010 DOI: 10.1016/j.compbiomed.2022.105563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022]
Abstract
The heap-based optimizer (HBO) is an optimization method proposed in recent years that may face local stagnation problems and show slow convergence speed due to the lack of detailed analysis of optimal solutions and a comprehensive search. Therefore, to mitigate these drawbacks and strengthen the performance of the algorithm in the field of medical diagnosis, a new MGOHBO method is proposed by introducing the modified Rosenbrock's rotational direction method (MRM), an operator from the grey wolf optimizer (GWM), and an orthogonal learning strategy (OL). The MGOHBO is compared with eleven famous and improved optimizers on IEEE CEC 2017. The results on benchmark functions indicate that the boosted MGOHBO has several significant advantages in terms of convergence accuracy and speed of the process. Additionally, this article analyzed the diversity and balance of MGOHBO in detail. Finally, the proposed MGOHBO algorithm is utilized to optimize the kernel extreme learning machines (KELM), and a new MGOHBO-KELM is proposed. To validate the performance of MGOHBO-KELM, seven disease diagnostic questions were introduced for testing in this work. In contrast to advanced models such as HBO-KELM and BP, it can be concluded that the MGOHBO-KELM model can achieve optimal results, which also proves that it has practical significance in solving medical diagnosis problems.
Collapse
|
8
|
Liu J, Wei J, Heidari AA, Kuang F, Zhang S, Gui W, Chen H, Pan Z. Chaotic simulated annealing multi-verse optimization enhanced kernel extreme learning machine for medical diagnosis. Comput Biol Med 2022; 144:105356. [PMID: 35299042 DOI: 10.1016/j.compbiomed.2022.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023]
Abstract
Classification models such as Multi-Verse Optimization (MVO) play a vital role in disease diagnosis. To improve the efficiency and accuracy of MVO, in this paper, the defects of MVO are mitigated and the improved MVO is combined with kernel extreme learning machine (KELM) for effective disease diagnosis. Although MVO obtains some relatively good results on some problems of interest, it suffers from slow convergence speed and local optima entrapment for some many-sided basins, especially multi-modal problems with high dimensions. To solve these shortcomings, in this study, a new chaotic simulated annealing overhaul of MVO (CSAMVO) is proposed. Based on MVO, two approaches are adopted to offer a relatively stable and efficient convergence speed. Specifically, a chaotic intensification mechanism (CIP) is applied to the optimal universe evaluation stage to increase the depth of the universe search. After obtaining relatively satisfactory results, the simulated annealing algorithm (SA) is employed to reinforce the capability of MVO to avoid local optima. To evaluate its performance, the proposed CSAMVO approach was compared with a wide range of classical algorithms on thirty-nine benchmark functions. The results show that the improved MVO outperforms the other algorithms in terms of solution quality and convergence speed. Furthermore, based on CSAMVO, a hybrid KELM model termed CSAMVO-KELM is established for disease diagnosis. To evaluate its effectiveness, the new hybrid system was compared with a multitude of competitive classifiers on two disease diagnosis problems. The results demonstrate that the proposed CSAMVO-assisted classifier can find solutions with better learning potential and higher predictive performance.
Collapse
Affiliation(s)
- Jiacong Liu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Jiahui Wei
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fangjun Kuang
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035, China.
| | - Siyang Zhang
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035, China.
| | - Wenyong Gui
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Zhifang Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
9
|
Chen X, Huang H, Heidari AA, Sun C, Lv Y, Gui W, Liang G, Gu Z, Chen H, Li C, Chen P. An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: A real case with lupus nephritis images. Comput Biol Med 2022; 142:105179. [DOI: 10.1016/j.compbiomed.2021.105179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023]
|
10
|
Hu J, Han Z, Heidari AA, Shou Y, Ye H, Wang L, Huang X, Chen H, Chen Y, Wu P. Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine. Comput Biol Med 2022; 142:105166. [PMID: 35077935 PMCID: PMC8701842 DOI: 10.1016/j.compbiomed.2021.105166] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19) has made the world more cautious about widespread viruses, and a tragic pandemic that was caused by a novel coronavirus has harmed human beings in recent years. The new coronavirus pneumonia outbreak is spreading rapidly worldwide. We collect arterial blood samples from 51 patients with a COVID-19 diagnosis. Blood gas analysis is performed using a Siemens RAPID Point 500 blood gas analyzer. To accurately determine the factors that play a decisive role in the early recognition and discrimination of COVID-19 severity, a prediction framework that is based on an improved binary Harris hawk optimization (HHO) algorithm in combination with a kernel extreme learning machine is proposed in this paper. This method uses specular reflection learning to improve the original HHO algorithm and is referred to as HHOSRL. The experimental results show that the selected indicators, such as age, partial pressure of oxygen, oxygen saturation, sodium ion concentration, and lactic acid, are essential for the early accurate assessment of COVID-19 severity by the proposed feature selection method. The simulation results show that the established methodlogy can achieve promising performance. We believe that our proposed model provides an effective strategy for accurate early assessment of COVID-19 and distinguishing disease severity. The codes of HHO will be updated in https://aliasgharheidari.com/HHO.html.
Collapse
Affiliation(s)
- Jiao Hu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Zhengyuan Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yeqi Shou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Hua Ye
- Department of Pulmonary and Critical Care Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China.
| | - Liangxing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Yanfan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
11
|
Multi-Population Enhanced Slime Mould Algorithm and with Application to Postgraduate Employment Stability Prediction. ELECTRONICS 2022. [DOI: 10.3390/electronics11020209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, the authors aimed to study an effective intelligent method for employment stability prediction in order to provide a reasonable reference for postgraduate employment decision and for policy formulation in related departments. First, this paper introduces an enhanced slime mould algorithm (MSMA) with a multi-population strategy. Moreover, this paper proposes a prediction model based on the modified algorithm and the support vector machine (SVM) algorithm called MSMA-SVM. Among them, the multi-population strategy balances the exploitation and exploration ability of the algorithm and improves the solution accuracy of the algorithm. Additionally, the proposed model enhances the ability to optimize the support vector machine for parameter tuning and for identifying compact feature subsets to obtain more appropriate parameters and feature subsets. Then, the proposed modified slime mould algorithm is compared against various other famous algorithms in experiments on the 30 IEEE CEC2017 benchmark functions. The experimental results indicate that the established modified slime mould algorithm has an observably better performance compared to the algorithms on most functions. Meanwhile, a comparison between the optimal support vector machine model and other several machine learning methods on their ability to predict employment stability was conducted, and the results showed that the suggested the optimal support vector machine model has better classification ability and more stable performance. Therefore, it is possible to infer that the optimal support vector machine model is likely to be an effective tool that can be used to predict employment stability.
Collapse
|