Zhou W, Fu J, Yan H, Du X, Wang Y, Zhou H. Event-Triggered Approximate Optimal Path-Following Control for Unmanned Surface Vehicles With State Constraints.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;
34:104-118. [PMID:
34224359 DOI:
10.1109/tnnls.2021.3090054]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article investigates the problem of path following for the underactuated unmanned surface vehicles (USVs) subject to state constraints. A useful control algorithm is proposed by combining the backstepping technique, adaptive dynamic programming (ADP), and the event-triggered mechanism. The presented approach consists of three modules: guidance law, dynamic controller, and event triggering. First, to deal with the "singularity" problem, the guidance-based path-following (GBPF) principle is introduced in the guidance law loop. In contrast to the traditional barrier Lyapunov function (BLF) method, this article converts the USV's constraint model to a class of nonlinear systems without state constraints by introducing a nonlinear mapping. The control signal generated by the dynamic controller module consists of a backstepping-based feedforward control signal and an ADP-based approximate optimal feedback control signal. Therefore, the presented scheme can guarantee the approximate optimal performance. To approximate the cost function and its partial derivative, a critic neural network (NN) is constructed. By considering the event-triggered condition, the dynamic controller is further improved. Compared with traditional time-triggered control methods, the proposed approach can greatly reduce communication and computational burdens. This article proves that the closed-loop system is stable, and the simulation results and experimental validation are given to illustrate the effectiveness of the proposed approach.
Collapse