1
|
Zhang F, Zhan C. Multiple generalized stability of nonlinear delayed systems subject to impulsive disturbance. Cogn Neurodyn 2025; 19:64. [PMID: 40260394 PMCID: PMC12009267 DOI: 10.1007/s11571-025-10241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/23/2025] Open
Abstract
The multiple generalized stability of nonlinear systems with impulsive disturbance and distributed delays is studied in this paper. By using the state space partition method, the number of multiple equilibrium points for n-dimensional system is given by∏ i = 1 n ( 2 K i + 1 ) with integerK i ≥ 0 , and the sufficient conditions for generalized stability of∏ i = 1 n ( K i + 1 ) equilibrium points are derived. Finally, the theoretical results are illustrated by using the simulations of an example.
Collapse
Affiliation(s)
- Fanghai Zhang
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, Anhui China
| | - Changlin Zhan
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, Anhui China
| |
Collapse
|
2
|
Cao B, Nie X, Zheng WX, Cao J. Multistability of State-Dependent Switched Fractional-Order Hopfield Neural Networks With Mexican-Hat Activation Function and Its Application in Associative Memories. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:1213-1227. [PMID: 38048243 DOI: 10.1109/tnnls.2023.3334871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The multistability and its application in associative memories are investigated in this article for state-dependent switched fractional-order Hopfield neural networks (FOHNNs) with Mexican-hat activation function (AF). Based on the Brouwer's fixed point theorem, the contraction mapping principle and the theory of fractional-order differential equations, some sufficient conditions are established to ensure the existence, exact existence and local stability of multiple equilibrium points (EPs) in the sense of Filippov, in which the positively invariant sets are also estimated. In particular, the analysis concerning the existence and stability of EPs is quite different from those in the literature because the considered system involves both fractional-order derivative and state-dependent switching. It should be pointed out that, compared with the results in the literature, the total number of EPs and stable EPs increases from and to and , respectively, where with being the system dimension. Besides, a new method is designed to realize associative memories for grayscale and color images by introducing a deviation vector, which, in comparison with the existing works, not only improves the utilization efficiency of EPs, but also reduces the system dimension and computational burden. Finally, the effectiveness of the theoretical results is illustrated by four numerical simulations.
Collapse
|
3
|
Zhang F, Huang T, Wu A, Zeng Z. Mittag-Leffler stability and application of delayed fractional-order competitive neural networks. Neural Netw 2024; 179:106501. [PMID: 38986190 DOI: 10.1016/j.neunet.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
In the article, the Mittag-Leffler stability and application of delayed fractional-order competitive neural networks (FOCNNs) are developed. By virtue of the operator pair, the conditions of the coexistence of equilibrium points (EPs) are discussed and analyzed for delayed FOCNNs, in which the derived conditions of coexistence improve the existing results. In particular, these conditions are simplified in FOCNNs with stepped activations. Furthermore, the Mittag-Leffler stability of delayed FOCNNs is established by using the principle of comparison, which enriches the methodologies of fractional-order neural networks. The results on the obtained stability can be used to design the horizontal line detection of images, which improves the practicability of image detection results. Two simulations are displayed to validate the superiority of the obtained results.
Collapse
Affiliation(s)
- Fanghai Zhang
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China.
| | - Tingwen Huang
- Department of Science Program, Texas A&M University at Qatar, Doha, Qatar.
| | - Ailong Wu
- College of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China.
| | - Zhigang Zeng
- School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Zhang H, Zeng Z. Adaptive Synchronization of Reaction-Diffusion Neural Networks With Nondifferentiable Delay via State Coupling and Spatial Coupling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:7555-7566. [PMID: 35100127 DOI: 10.1109/tnnls.2022.3144222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this article, master-slave synchronization of reaction-diffusion neural networks (RDNNs) with nondifferentiable delay is investigated via the adaptive control method. First, centralized and decentralized adaptive controllers with state coupling are designed, respectively, and a new analytical method by discussing the size of adaptive gain is proposed to prove the convergence of the adaptively controlled error system with general delay. Then, spatial coupling with adaptive gains depending on the diffusion information of the state is first proposed to achieve the master-slave synchronization of delayed RDNNs, while this coupling structure was regarded as a negative effect in most of the existing works. Finally, numerical examples are given to show the effectiveness of the proposed adaptive controllers. In comparison with the existing adaptive controllers, the proposed adaptive controllers in this article are still effective even if the network parameters are unknown and the delay is nonsmooth, and thus have a wider range of applications.
Collapse
|
5
|
Cao J, Udhayakumar K, Rakkiyappan R, Li X, Lu J. A Comprehensive Review of Continuous-/Discontinuous-Time Fractional-Order Multidimensional Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:5476-5496. [PMID: 34962883 DOI: 10.1109/tnnls.2021.3129829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamical study of continuous-/discontinuous-time fractional-order neural networks (FONNs) has been thoroughly explored, and several publications have been made available. This study is designed to give an exhaustive review of the dynamical studies of multidimensional FONNs in continuous/discontinuous time, including Hopfield NNs (HNNs), Cohen-Grossberg NNs, and bidirectional associative memory NNs, and similar models are considered in real ( [Formula: see text]), complex ( [Formula: see text]), quaternion ( [Formula: see text]), and octonion ( [Formula: see text]) fields. Since, in practice, delays are unavoidable, theoretical findings from multidimensional FONNs with various types of delays are thoroughly evaluated. Some required and adequate stability and synchronization requirements are also mentioned for fractional-order NNs without delays.
Collapse
|
6
|
Shen Y, Zhu S, Liu X, Wen S. Multiple Mittag-Leffler Stability of Fractional-Order Complex-Valued Memristive Neural Networks With Delays. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:5815-5825. [PMID: 35976827 DOI: 10.1109/tcyb.2022.3194059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article discusses the coexistence and dynamical behaviors of multiple equilibrium points (Eps) for fractional-order complex-valued memristive neural networks (FCVMNNs) with delays. First, based on the state space partition method, some sufficient conditions are proposed to guarantee that there are multiple Eps in one FCVMNN. Then, the Mittag-Leffler stability of those multiple Eps is proved by using the Lyapunov function. Simultaneously, the enlarged attraction basins are obtained to improve and extend the existing theoretical results in the previous literature. In addition, some existing stability results in the literature are special cases of a new result herein. Finally, two illustrative examples with computer simulations are presented to verify the effectiveness of theoretical analysis.
Collapse
|
7
|
Liu P, Xu M, Sun J, Zeng Z. On Pinning Linear and Adaptive Synchronization of Multiple Fractional-Order Neural Networks With Unbounded Time-Varying Delays. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:2402-2411. [PMID: 34669585 DOI: 10.1109/tcyb.2021.3119922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this article, the synchronization of multiple fractional-order neural networks with unbounded time-varying delays (FNNUDs) is investigated. By introducing a pinning linear control, sufficient conditions are provided for achieving the synchronization of multiple FNNUDs via an extended Halanay inequality. Moreover, a new effective adaptive control which applies to the fractional differential equations with unbounded time-varying delays is designed, under which sufficient criteria are presented to ensure the synchronization of multiple FNNUDs. The introduced control in this article is also workable in traditional integer-order neural networks. Finally, the validity of obtained results is demonstrated by a numerical example.
Collapse
|
8
|
Wu Z, Nie X, Cao B. Coexistence and local stability of multiple equilibrium points for fractional-order state-dependent switched competitive neural networks with time-varying delays. Neural Netw 2023; 160:132-147. [PMID: 36640489 DOI: 10.1016/j.neunet.2022.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
This paper investigates the coexistence and local stability of multiple equilibrium points for a class of competitive neural networks with sigmoidal activation functions and time-varying delays, in which fractional-order derivative and state-dependent switching are involved at the same time. Some novel criteria are established to ensure that such n-neuron neural networks can have [Formula: see text] total equilibrium points and [Formula: see text] locally stable equilibrium points with m1+m2=n, based on the fixed-point theorem, the definition of equilibrium point in the sense of Filippov, the theory of fractional-order differential equation and Lyapunov function method. The investigation implies that the competitive neural networks with switching can possess greater storage capacity than the ones without switching. Moreover, the obtained results include the multistability results of both fractional-order switched Hopfield neural networks and integer-order switched Hopfield neural networks as special cases, thus generalizing and improving some existing works. Finally, four numerical examples are presented to substantiate the effectiveness of the theoretical analysis.
Collapse
Affiliation(s)
- Zhongwen Wu
- School of Mathematics, Southeast University, Nanjing, 211189, China.
| | - Xiaobing Nie
- School of Mathematics, Southeast University, Nanjing, 211189, China.
| | - Boqiang Cao
- School of Mathematics, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
9
|
Liu P, Wang J, Zeng Z. An Overview of the Stability Analysis of Recurrent Neural Networks With Multiple Equilibria. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:1098-1111. [PMID: 34449396 DOI: 10.1109/tnnls.2021.3105519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The stability analysis of recurrent neural networks (RNNs) with multiple equilibria has received extensive interest since it is a prerequisite for successful applications of RNNs. With the increasing theoretical results on this topic, it is desirable to review the results for a systematical understanding of the state of the art. This article provides an overview of the stability results of RNNs with multiple equilibria including complete stability and multistability. First, preliminaries on the complete stability and multistability analysis of RNNs are introduced. Second, the complete stability results of RNNs are summarized. Third, the multistability results of various RNNs are reviewed in detail. Finally, future directions in these interesting topics are suggested.
Collapse
|
10
|
Multiple asymptotical ω-periodicity of fractional-order delayed neural networks under state-dependent switching. Neural Netw 2023; 157:11-25. [DOI: 10.1016/j.neunet.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
|
11
|
pth moment synchronization of stochastic impulsive neural networks with time-varying coefficients and unbounded delays. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Chen L, Gu P, Lopes AM, Chai Y, Xu S, Ge S. Asymptotic Stability of Fractional-Order Incommensurate Neural Networks. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-11095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Wan L, Liu Z. Multiple O(t-q) stability and instability of time-varying delayed fractional-order Cohen-Grossberg neural networks with Gaussian activation functions. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
New results on finite-time stability of fractional-order neural networks with time-varying delay. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06339-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Multi-periodicity of switched neural networks with time delays and periodic external inputs under stochastic disturbances. Neural Netw 2021; 141:107-119. [PMID: 33887601 DOI: 10.1016/j.neunet.2021.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
This paper presents new theoretical results on the multi-periodicity of recurrent neural networks with time delays evoked by periodic inputs under stochastic disturbances and state-dependent switching. Based on the geometric properties of activation function and switching threshold, the neuronal state space is partitioned into 5n regions in which 3n ones are shown to be positively invariant with probability one. Furthermore, by using Itô's formula, Lyapunov functional method, and the contraction mapping theorem, two criteria are proposed to ascertain the existence and mean-square exponential stability of a periodic orbit in every positive invariant set. As a result, the number of mean-square exponentially stable periodic orbits increases to 3n from 2n in a neural network without switching. Two illustrative examples are elaborated to substantiate the efficacy and characteristics of the theoretical results.
Collapse
|