1
|
Shang Z, Li R, Zheng C, Li H, Cui Y. Relative Entropy Regularized Sample-Efficient Reinforcement Learning With Continuous Actions. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:475-485. [PMID: 37943648 DOI: 10.1109/tnnls.2023.3329513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In this article, a novel reinforcement learning (RL) approach, continuous dynamic policy programming (CDPP), is proposed to tackle the issues of both learning stability and sample efficiency in the current RL methods with continuous actions. The proposed method naturally extends the relative entropy regularization from the value function-based framework to the actor-critic (AC) framework of deep deterministic policy gradient (DDPG) to stabilize the learning process in continuous action space. It tackles the intractable softmax operation over continuous actions in the critic by Monte Carlo estimation and explores the practical advantages of the Mellowmax operator. A Boltzmann sampling policy is proposed to guide the exploration of actor following the relative entropy regularized critic for superior learning capability, exploration efficiency, and robustness. Evaluated by several benchmark and real-robot-based simulation tasks, the proposed method illustrates the positive impact of the relative entropy regularization including efficient exploration behavior and stable policy update in RL with continuous action space and successfully outperforms the related baseline approaches in both sample efficiency and learning stability.
Collapse
|
2
|
Wang J, Wang D, Li X, Qiao J. Dichotomy value iteration with parallel learning design towards discrete-time zero-sum games. Neural Netw 2023; 167:751-762. [PMID: 37729789 DOI: 10.1016/j.neunet.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/16/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
In this paper, a novel parallel learning framework is developed to solve zero-sum games for discrete-time nonlinear systems. Briefly, the purpose of this study is to determine a tentative function according to the prior knowledge of the value iteration (VI) algorithm. The learning process of the parallel controllers can be guided by the tentative function. That is to say, the neighborhood of the optimal cost function can be compressed within a small range via two typical exploration policies. Based on the parallel learning framework, a novel dichotomy VI algorithm is established to accelerate the learning speed. It is shown that the parallel controllers will converge to the optimal policy from contrary initial policies. Finally, two typical systems are used to demonstrate the learning performance of the constructed dichotomy VI algorithm.
Collapse
Affiliation(s)
- Jiangyu Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing 100124, China; Beijing Laboratory of Smart Environmental Protection, Beijing University of Technology, Beijing 100124, China.
| | - Ding Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing 100124, China; Beijing Laboratory of Smart Environmental Protection, Beijing University of Technology, Beijing 100124, China.
| | - Xin Li
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing 100124, China; Beijing Laboratory of Smart Environmental Protection, Beijing University of Technology, Beijing 100124, China.
| | - Junfei Qiao
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing 100124, China; Beijing Laboratory of Smart Environmental Protection, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Zhang Y, Pan X, Wang Y. Category learning in a recurrent neural network with reinforcement learning. Front Psychiatry 2022; 13:1008011. [PMID: 36387007 PMCID: PMC9640766 DOI: 10.3389/fpsyt.2022.1008011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
It is known that humans and animals can learn and utilize category information quickly and efficiently to adapt to changing environments, and several brain areas are involved in learning and encoding category information. However, it is unclear that how the brain system learns and forms categorical representations from the view of neural circuits. In order to investigate this issue from the network level, we combine a recurrent neural network with reinforcement learning to construct a deep reinforcement learning model to demonstrate how the category is learned and represented in the network. The model consists of a policy network and a value network. The policy network is responsible for updating the policy to choose actions, while the value network is responsible for evaluating the action to predict rewards. The agent learns dynamically through the information interaction between the policy network and the value network. This model was trained to learn six stimulus-stimulus associative chains in a sequential paired-association task that was learned by the monkey. The simulated results demonstrated that our model was able to learn the stimulus-stimulus associative chains, and successfully reproduced the similar behavior of the monkey performing the same task. Two types of neurons were found in this model: one type primarily encoded identity information about individual stimuli; the other type mainly encoded category information of associated stimuli in one chain. The two types of activity-patterns were also observed in the primate prefrontal cortex after the monkey learned the same task. Furthermore, the ability of these two types of neurons to encode stimulus or category information was enhanced during this model was learning the task. Our results suggest that the neurons in the recurrent neural network have the ability to form categorical representations through deep reinforcement learning during learning stimulus-stimulus associations. It might provide a new approach for understanding neuronal mechanisms underlying how the prefrontal cortex learns and encodes category information.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Xiaochuan Pan
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Yihong Wang
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| |
Collapse
|