• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (2652)
For: Jiang Q, Yan S, Cheng H, Yan X. Local-Global Modeling and Distributed Computing Framework for Nonlinear Plant-Wide Process Monitoring With Industrial Big Data. IEEE Trans Neural Netw Learn Syst 2021;32:3355-3365. [PMID: 32324574 DOI: 10.1109/tnnls.2020.2985223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Number Cited by Other Article(s)
1
Yang R, He F, He M, Yang J, Huang X. Decentralized Kernel Ridge Regression Based on Data-Dependent Random Feature. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025;36:7945-7954. [PMID: 38995708 DOI: 10.1109/tnnls.2024.3414325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
2
Jiang Q, Jiang J, Wang W, Pan C, Zhong W. Partial Cross Mapping Based on Sparse Variable Selection for Direct Fault Root Cause Diagnosis for Industrial Processes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:6218-6230. [PMID: 37022853 DOI: 10.1109/tnnls.2023.3242361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
3
Li Q, Wang Y, Dong J, Zhang C, Peng K. Multi-node knowledge graph assisted distributed fault detection for large-scale industrial processes based on graph attention network and bidirectional LSTMs. Neural Netw 2024;173:106210. [PMID: 38417353 DOI: 10.1016/j.neunet.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
4
Song P, Zhao C, Huang B, Ding J. Explicit Representation and Customized Fault Isolation Framework for Learning Temporal and Spatial Dependencies in Industrial Processes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:2997-3011. [PMID: 37030819 DOI: 10.1109/tnnls.2023.3262277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
5
Peng C, Ying X, ZhiQi H. Industrial Process Monitoring Based on Dynamic Overcomplete Broad Learning Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:1761-1772. [PMID: 35802548 DOI: 10.1109/tnnls.2022.3185167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
6
Chen D, Liu R, Hu Q, Ding SX. Interaction-Aware Graph Neural Networks for Fault Diagnosis of Complex Industrial Processes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:6015-6028. [PMID: 34919524 DOI: 10.1109/tnnls.2021.3132376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
7
Gao H, Huang W, Gao X, Han H. Decentralized adaptively weighted stacked autoencoder-based incipient fault detection for nonlinear industrial processes. ISA TRANSACTIONS 2023;139:216-228. [PMID: 37202232 DOI: 10.1016/j.isatra.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
8
Tian L, Li Z, Yan X. A novel quality-relevant fault detection method based on MICA-SOM multi-subspace partitioning for non-Gaussian industrial processes. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
9
Yu J, Zhang Y. Challenges and opportunities of deep learning-based process fault detection and diagnosis: a review. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
10
Du L, Jin W, Wang Y, Jiang Q. Dynamic Batch Process Monitoring Based on Time-Slice Latent Variable Correlation Analysis. ACS OMEGA 2022;7:41069-41081. [PMID: 36406484 PMCID: PMC9670696 DOI: 10.1021/acsomega.2c04445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
11
Huang K, Wu S, Sun B, Yang C, Gui W. Metric Learning-Based Fault Diagnosis and Anomaly Detection for Industrial Data With Intraclass Variance. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;PP:547-558. [PMID: 35609092 DOI: 10.1109/tnnls.2022.3175888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
12
Neural representations for quality-related kernel learning and fault detection. Soft comput 2022. [DOI: 10.1007/s00500-022-07022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
13
Huang C, Chai Y, Zhu Z, Liu B, Tang Q. A Novel Distributed Fault Detection Approach Based on the Variational Autoencoder Model. ACS OMEGA 2022;7:2996-3006. [PMID: 35097292 PMCID: PMC8793089 DOI: 10.1021/acsomega.1c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
14
Zhong L, Chang Y, Wang F, Gao S. Distributed Missing Values Imputation Schemes for Plant-Wide Industrial Process Using Variational Bayesian Principal Component Analysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Zhou C, Liu T, Zhu H, Li Y, Li F. Nonstationary and Multirate Process Monitoring by Using Common Trends and Multiple Probability Principal Component Analysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Li L, Kumar Damarla S, Wang Y, Huang B. A Gaussian mixture model based virtual sample generation approach for small datasets in industrial processes. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
17
He S, Chen F, Jiang B. Physical intrusion monitoring via local-global network and deep isolation forest based on heterogeneous signals. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
18
Cheng H, Liu Y, Huang D, Pan Y, Wang Q. Adaptive Transfer Learning of Cross-Spatiotemporal Canonical Correlation Analysis for Plant-Wide Process Monitoring. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
19
Jiang Q, Yan X. Neighborhood Stable Correlation Analysis for Robust Monitoring of Multiunit Chemical Processes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA