1
|
Dong X, Nie F, Wu D, Wang R, Li X. Joint Structured Bipartite Graph and Row-Sparse Projection for Large-Scale Feature Selection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:6911-6924. [PMID: 38717885 DOI: 10.1109/tnnls.2024.3389029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Feature selection plays an important role in data analysis, yet traditional graph-based methods often produce suboptimal results. These methods typically follow a two-stage process: constructing a graph with data-to-data affinities or a bipartite graph with data-to-anchor affinities and independently selecting features based on their scores. In this article, a large-scale feature selection approach based on structured bipartite graph and row-sparse projection (RS2BLFS) is proposed to overcome this limitation. RS2BLFS integrates the construction of a structured bipartite graph consisting of c connected components into row-sparse projection learning with k nonzero rows. This integration allows for the joint selection of an optimal feature subset in an unsupervised manner. Notably, the c connected components of the structured bipartite graph correspond to c clusters, each with multiple subcluster centers. This feature makes RS2BLFS particularly effective for feature selection and clustering on nonspherical large-scale data. An algorithm with theoretical analysis is developed to solve the optimization problem involved in RS2BLFS. Experimental results on synthetic and real-world datasets confirm its effectiveness in feature selection tasks.
Collapse
|
2
|
Askr H, Fayed MAA, Farghaly HM, Gomaa MM, Elgeldawi E, Elshaier YAMM, Darwish A, Hassanien AE. Exploring the anticancer activities of Sulfur and magnesium oxide through integration of deep learning and fuzzy rough set analyses based on the features of Vidarabine alkaloid. Sci Rep 2025; 15:2224. [PMID: 39824867 PMCID: PMC11742670 DOI: 10.1038/s41598-024-82483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/05/2024] [Indexed: 01/20/2025] Open
Abstract
Drug discovery and development is a challenging and time-consuming process. Laboratory experiments conducted on Vidarabine showed IC50 6.97 µg∕mL, 25.78 µg∕mL, and ˃ 100 µg∕mL against non-small Lung cancer (A-549), Human Melanoma (A-375), and Human epidermoid Skin carcinoma (skin/epidermis) (A-431) respectively. To address these challenges, this paper presents an Artificial Intelligence (AI) model that combines the capabilities of Deep Learning (DL) to identify potential new drug candidates, Fuzzy Rough Set (FRS) theory to determine the most important chemical compound features, Explainable Artificial Intelligence (XAI) to explain the features' importance in the last layer, and medicinal chemistry to rediscover anticancer drugs based on natural products like Vidarabine. The proposed model aims to identify potential new drug candidates. By analyzing the results from laboratory experiments on Vidarabine, the model identifies Sulfur and magnesium oxide (MgO) as new potential anticancer agents. The proposed model selected Sulfur and MgO based on Interpreting their promising features, and further laboratory experiments were conducted to validate the model's predictions. The results demonstrated that, while Vidarabine was inactive against the A-431 cell line (IC50 ˃ 100 µg∕mL), Sulfur and MgO exhibited significant anticancer activity (IC50 4.55 and 17.29 µg/ml respectively). Sulfur displayed strong activity against A-549 and A-375 cell lines (IC50 3.06 and 1.86 µg/ml respectively) better than Vidarabine (IC50 6.97 and 25.78 µg/ml respectively). However, MgO showed weaker activity against these two cell lines. This paper emphasizes the importance of uncovering hidden chemical features that may not be discernible without the assistance of AI. This highlights the ability of AI to discover novel compounds with therapeutic potential, which can significantly impact the field of drug discovery. The promising anticancer activity exhibited by Sulfur and MgO warrants further preclinical studies.
Collapse
Affiliation(s)
- Heba Askr
- Faculty of Computers and Artificial Intelligence, University of Sadat City, Sadat City, Egypt.
- Scientific Research School of Egypt (SRSEG), .
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Heba Mamdouh Farghaly
- Computer Science Department, Faculty of Science, Minia University, Minya, Egypt
- Scientific Research School of Egypt (SRSEG)
| | - Mamdouh M Gomaa
- Computer Science Department, Faculty of Science, Minia University, Minya, Egypt
- Scientific Research School of Egypt (SRSEG)
| | - Enas Elgeldawi
- Computer Science Department, Faculty of Science, Minia University, Minya, Egypt
- Scientific Research School of Egypt (SRSEG)
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Ashraf Darwish
- Faculty of Science, Helwan University, Cairo, Egypt
- Scientific Research School of Egypt (SRSEG)
| | - Aboul Ella Hassanien
- Faculty of Computer and AI, Cairo University, Giza, Egypt
- Scientific Research School of Egypt (SRSEG)
| |
Collapse
|
3
|
Li XP, Wang ZY, Shi ZL, So HC, Sidiropoulos ND. Robust Tensor Completion via Capped Frobenius Norm. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:9700-9712. [PMID: 37021988 DOI: 10.1109/tnnls.2023.3236415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tensor completion (TC) refers to restoring the missing entries in a given tensor by making use of the low-rank structure. Most existing algorithms have excellent performance in Gaussian noise or impulsive noise scenarios. Generally speaking, the Frobenius-norm-based methods achieve excellent performance in additive Gaussian noise, while their recovery severely degrades in impulsive noise. Although the algorithms using the lp -norm ( ) or its variants can attain high restoration accuracy in the presence of gross errors, they are inferior to the Frobenius-norm-based methods when the noise is Gaussian-distributed. Therefore, an approach that is able to perform well in both Gaussian noise and impulsive noise is desired. In this work, we use a capped Frobenius norm to restrain outliers, which corresponds to a form of the truncated least-squares loss function. The upper bound of our capped Frobenius norm is automatically updated using normalized median absolute deviation during iterations. Therefore, it achieves better performance than the lp -norm with outlier-contaminated observations and attains comparable accuracy to the Frobenius norm without tuning parameter in Gaussian noise. We then adopt the half-quadratic theory to convert the nonconvex problem into a tractable multivariable problem, that is, convex optimization with respect to (w.r.t.) each individual variable. To address the resultant task, we exploit the proximal block coordinate descent (PBCD) method and then establish the convergence of the suggested algorithm. Specifically, the objective function value is guaranteed to be convergent while the variable sequence has a subsequence converging to a critical point. Experimental results based on real-world images and videos exhibit the superiority of the devised approach over several state-of-the-art algorithms in terms of recovery performance. MATLAB code is available at https://github.com/Li-X-P/Code-of-Robust-Tensor-Completion.
Collapse
|
4
|
Peng L, Hu R, Kong F, Gan J, Mo Y, Shi X, Zhu X. Reverse Graph Learning for Graph Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4530-4541. [PMID: 35380973 DOI: 10.1109/tnnls.2022.3161030] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graph neural networks (GNNs) conduct feature learning by taking into account the local structure preservation of the data to produce discriminative features, but need to address the following issues, i.e., 1) the initial graph containing faulty and missing edges often affect feature learning and 2) most GNN methods suffer from the issue of out-of-example since their training processes do not directly generate a prediction model to predict unseen data points. In this work, we propose a reverse GNN model to learn the graph from the intrinsic space of the original data points as well as to investigate a new out-of-sample extension method. As a result, the proposed method can output a high-quality graph to improve the quality of feature learning, while the new method of out-of-sample extension makes our reverse GNN method available for conducting supervised learning and semi-supervised learning. Experimental results on real-world datasets show that our method outputs competitive classification performance, compared to state-of-the-art methods, in terms of semi-supervised node classification, out-of-sample extension, random edge attack, link prediction, and image retrieval.
Collapse
|
5
|
Xu Z, Yang F, Wang H, Sun J, Zhu H, Wang S, Zhang Y. CGUFS: A clustering-guided unsupervised feature selection algorithm for gene expression data. JOURNAL OF KING SAUD UNIVERSITY. COMPUTER AND INFORMATION SCIENCES 2023; 35:101731. [PMID: 38567001 PMCID: PMC7615789 DOI: 10.1016/j.jksuci.2023.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aim Gene expression data is typically high dimensional with a limited number of samples and contain many features that are unrelated to the disease of interest. Existing unsupervised feature selection algorithms primarily focus on the significance of features in maintaining the data structure while not taking into account the redundancy among features. Determining the appropriate number of significant features is another challenge. Method In this paper, we propose a clustering-guided unsupervised feature selection (CGUFS) algorithm for gene expression data that addresses these problems. Our proposed algorithm introduces three improvements over existing algorithms. For the problem that existing clustering algorithms require artificially specifying the number of clusters, we propose an adaptive k-value strategy to assign appropriate pseudo-labels to each sample by iteratively updating a change function. For the problem that existing algorithms fail to consider the redundancy among features, we propose a feature grouping strategy to group highly redundant features. For the problem that the existing algorithms cannot filter the redundant features, we propose an adaptive filtering strategy to determine the feature combinations to be retained by calculating the potentially effective features and potentially redundant features of each feature group. Result Experimental results show that the average accuracy (ACC) and matthews correlation coefficient (MCC) indexes of the C4.5 classifier on the optimal features selected by the CGUFS algorithm reach 74.37% and 63.84%, respectively, significantly superior to the existing algorithms. Conclusion Similarly, the average ACC and MCC indexes of the Adaboost classifier on the optimal features selected by the CGUFS algorithm are significantly superior to the existing algorithms. In addition, statistical experiment results show significant differences between the CGUFS algorithm and the existing algorithms.
Collapse
Affiliation(s)
- Zhaozhao Xu
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Fangyuan Yang
- Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Hong Wang
- Department of Gynecologic Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Junding Sun
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Hengde Zhu
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
6
|
Alavi F, Hashemi S. Data-adaptive kernel clustering with half-quadratic-based neighborhood relationship preservation. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Feature selection based on self-information and entropy measures for incomplete neighborhood decision systems. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractFor incomplete datasets with mixed numerical and symbolic features, feature selection based on neighborhood multi-granulation rough sets (NMRS) is developing rapidly. However, its evaluation function only considers the information contained in the lower approximation of the neighborhood decision, which easily leads to the loss of some information. To solve this problem, we construct a novel NMRS-based uncertain measure for feature selection, named neighborhood multi-granulation self-information-based pessimistic neighborhood multi-granulation tolerance joint entropy (PTSIJE), which can be used to incomplete neighborhood decision systems. First, from the algebra view, four kinds of neighborhood multi-granulation self-information measures of decision variables are proposed by using the upper and lower approximations of NMRS. We discuss the related properties, and find the fourth measure-lenient neighborhood multi-granulation self-information measure (NMSI) has better classification performance. Then, inspired by the algebra and information views simultaneously, a feature selection method based on PTSIJE is proposed. Finally, the Fisher score method is used to delete uncorrelated features to reduce the computational complexity for high-dimensional gene datasets, and a heuristic feature selection algorithm is raised to improve classification performance for mixed and incomplete datasets. Experimental results on 11 datasets show that our method selects fewer features and has higher classification accuracy than related methods.
Collapse
|
8
|
|
9
|
Self-Adaptive Clustering of Dynamic Multi-Graph Learning. Neural Process Lett 2022. [DOI: 10.1007/s11063-020-10405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Semi-supervised Learning with Graph Convolutional Networks Based on Hypergraph. Neural Process Lett 2022. [DOI: 10.1007/s11063-021-10487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zhu Y, Tan M, Wei J. Robust Multi-view Classification with Sample Constraints. Neural Process Lett 2022. [DOI: 10.1007/s11063-021-10483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Research for an Adaptive Classifier Based on Dynamic Graph Learning. Neural Process Lett 2022. [DOI: 10.1007/s11063-021-10452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Nonlinear Graph Learning-Convolutional Networks for Node Classification. Neural Process Lett 2022. [DOI: 10.1007/s11063-021-10478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Yang X, Chen H, Li T, Luo C. A noise-aware fuzzy rough set approach for feature selection. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Huang Z, Li J. Noise-Tolerant Discrimination Indexes for Fuzzy ɣ Covering and Feature Subset Selection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; PP:609-623. [PMID: 35622800 DOI: 10.1109/tnnls.2022.3175922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fuzzy β covering (FBC) has attracted considerable attention in recent years. Nevertheless, as the basic information granularity of FBC, fuzzy β neighborhood does not satisfy reflexivity, which may lead to instability in classification learning and decision-making. Although a few studies have involved reflexive fuzzy β neighborhoods, they only focus on a single fuzzy covering and cannot effectively deal with the information representation and information fusion of multiple fuzzy coverings. Moreover, there is a lack of investigation on noise-tolerant uncertainty measures for FBC, as well as their application in feature selection. Motivated by these issues, we investigate a noise-tolerant variable precision discrimination index (VPDI) by means of a new reflexive fuzzy covering neighborhood. To this end, fuzzy ɣ neighborhood with reflexivity is introduced to characterize the information fusion of a fuzzy covering family. An uncertainty measure called fuzzy ɣ neighborhood discrimination index is then presented to reflect the discriminatory power of fuzzy covering families. Some variants of the uncertainty measure, such as variable precision joint discrimination index, variable precision conditional discrimination index, and variable precision mutual discrimination index, are then put forth by means of fuzzy decision. These VPDIs can be used as an evaluation metric for a family of fuzzy coverings. Finally, the knowledge reduction of fuzzy covering decision systems is addressed from the point of keeping the discriminatory power, and a heuristic feature selection algorithm is designed by means of the variable precision conditional discrimination index. The experiments on 16 public datasets exhibit that the proposed algorithm can effectively reduce redundant features and achieve competitive results compared with six state-of-the-art feature selection algorithms. Moreover, it demonstrates strong robustness to the interference of random noise.
Collapse
|
16
|
Online group streaming feature selection using entropy-based uncertainty measures for fuzzy neighborhood rough sets. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractOnline group streaming feature selection, as an essential online processing method, can deal with dynamic feature selection tasks by considering the original group structure information of the features. Due to the fuzziness and uncertainty of the feature stream, some existing methods are unstable and yield low predictive accuracy. To address these issues, this paper presents a novel online group streaming feature selection method (FNE-OGSFS) using fuzzy neighborhood entropy-based uncertainty measures. First, a separability measure integrating the dependency degree with the coincidence degree is proposed and introduced into the fuzzy neighborhood rough sets model to define a new fuzzy neighborhood entropy. Second, inspired by both algebra and information views, some fuzzy neighborhood entropy-based uncertainty measures are investigated and some properties are derived. Furthermore, the optimal features in the group are selected to flow into the feature space according to the significance of features, and the features with interactions are left. Then, all selected features are re-evaluated by the Lasso model to discard the redundant features. Finally, an online group streaming feature selection algorithm is designed. Experimental results compared with eight representative methods on thirteen datasets show that FNE-OGSFS can achieve better comprehensive performance.
Collapse
|
17
|
Chen C, Ye M, Qi M, Wu J, Jiang J, Lin CW. Structure-Aware Positional Transformer for Visible-Infrared Person Re-Identification. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:2352-2364. [PMID: 35235507 DOI: 10.1109/tip.2022.3141868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Visible-infrared person re-identification (VI-ReID) is a cross-modality retrieval problem, which aims at matching the same pedestrian between the visible and infrared cameras. Due to the existence of pose variation, occlusion, and huge visual differences between the two modalities, previous studies mainly focus on learning image-level shared features. Since they usually learn a global representation or extract uniformly divided part features, these methods are sensitive to misalignments. In this paper, we propose a structure-aware positional transformer (SPOT) network to learn semantic-aware sharable modality features by utilizing the structural and positional information. It consists of two main components: attended structure representation (ASR) and transformer-based part interaction (TPI). Specifically, ASR models the modality-invariant structure feature for each modality and dynamically selects the discriminative appearance regions under the guidance of the structure information. TPI mines the part-level appearance and position relations with a transformer to learn discriminative part-level modality features. With a weighted combination of ASR and TPI, the proposed SPOT explores the rich contextual and structural information, effectively reducing cross-modality difference and enhancing the robustness against misalignments. Extensive experiments indicate that SPOT is superior to the state-of-the-art methods on two cross-modal datasets. Notably, the Rank-1/mAP value on the SYSU-MM01 dataset has improved by 8.43%/6.80%.
Collapse
|
18
|
Hu R, Gan J, Zhu X, Liu T, Shi X. Multi-task multi-modality SVM for early COVID-19 Diagnosis using chest CT data. Inf Process Manag 2022; 59:102782. [PMID: 34629687 PMCID: PMC8487772 DOI: 10.1016/j.ipm.2021.102782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
In the early diagnosis of the Coronavirus disease (COVID-19), it is of great importance for either distinguishing severe cases from mild cases or predicting the conversion time that mild cases would possibly convert to severe cases. This study investigates both of them in a unified framework by exploring the problems such as slight appearance difference between mild cases and severe cases, the interpretability, the High Dimension and Low Sample Size (HDLSS) data, and the class imbalance. To this end, the proposed framework includes three steps: (1) feature extraction which first conducts the hierarchical segmentation on the chest Computed Tomography (CT) image data and then extracts multi-modality handcrafted features for each segment, aiming at capturing the slight appearance difference from different perspectives; (2) data augmentation which employs the over-sampling technique to augment the number of samples corresponding to the minority classes, aiming at investigating the class imbalance problem; and (3) joint construction of classification and regression by proposing a novel Multi-task Multi-modality Support Vector Machine (MM-SVM) method to solve the issue of the HDLSS data and achieve the interpretability. Experimental analysis on two synthetic and one real COVID-19 data set demonstrated that our proposed framework outperformed six state-of-the-art methods in terms of binary classification and regression performance.
Collapse
Affiliation(s)
- Rongyao Hu
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Massey University Albany Campus, Auckland 0745, New Zealand
| | - Jiangzhang Gan
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Massey University Albany Campus, Auckland 0745, New Zealand
| | - Xiaofeng Zhu
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Massey University Albany Campus, Auckland 0745, New Zealand
| | - Tong Liu
- Massey University Albany Campus, Auckland 0745, New Zealand
| | - Xiaoshuang Shi
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
19
|
Hu R, Peng Z, Zhu X, Gan J, Zhu Y, Ma J, Wu G. Multi-Band Brain Network Analysis for Functional Neuroimaging Biomarker Identification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3843-3855. [PMID: 34310294 PMCID: PMC8931676 DOI: 10.1109/tmi.2021.3099641] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The functional connectomic profile is one of the non-invasive imaging biomarkers in the computer-assisted diagnostic system for many neuro-diseases. However, the diagnostic power of functional connectivity is challenged by mixed frequency-specific neuronal oscillations in the brain, which makes the single Functional Connectivity Network (FCN) often underpowered to capture the disease-related functional patterns. To address this challenge, we propose a novel functional connectivity analysis framework to conduct joint feature learning and personalized disease diagnosis, in a semi-supervised manner, aiming at focusing on putative multi-band functional connectivity biomarkers from functional neuroimaging data. Specifically, we first decompose the Blood Oxygenation Level Dependent (BOLD) signals into multiple frequency bands by the discrete wavelet transform, and then cast the alignment of all fully-connected FCNs derived from multiple frequency bands into a parameter-free multi-band fusion model. The proposed fusion model fuses all fully-connected FCNs to obtain a sparsely-connected FCN (sparse FCN for short) for each individual subject, as well as lets each sparse FCN be close to its neighbored sparse FCNs and be far away from its furthest sparse FCNs. Furthermore, we employ the l1 -SVM to conduct joint brain region selection and disease diagnosis. Finally, we evaluate the effectiveness of our proposed framework on various neuro-diseases, i.e., Fronto-Temporal Dementia (FTD), Obsessive-Compulsive Disorder (OCD), and Alzheimer's Disease (AD), and the experimental results demonstrate that our framework shows more reasonable results, compared to state-of-the-art methods, in terms of classification performance and the selected brain regions. The source code can be visited by the url https://github.com/reynard-hu/mbbna.
Collapse
|
20
|
|
21
|
|
22
|
|
23
|
Li L, Zhao K, Gan J, Cai S, Liu T, Mu H, Sun R. Robust Adaptive Semi-supervised Classification Method based on Dynamic Graph and Self-paced Learning. Inf Process Manag 2021. [DOI: 10.1016/j.ipm.2020.102433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Zhang H, Lu G, Zhan M, Zhang B. Semi-Supervised Classification of Graph Convolutional Networks with Laplacian Rank Constraints. Neural Process Lett 2021. [DOI: 10.1007/s11063-020-10404-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Zhu X, Song B, Shi F, Chen Y, Hu R, Gan J, Zhang W, Li M, Wang L, Gao Y, Shan F, Shen D. Joint prediction and time estimation of COVID-19 developing severe symptoms using chest CT scan. Med Image Anal 2021; 67:101824. [PMID: 33091741 PMCID: PMC7547024 DOI: 10.1016/j.media.2020.101824] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the conversion time that patients possibly convert to the severe stage, for designing effective treatment plans and reducing the clinicians' workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time formulated as a classification task, and if yes, the conversion time will be predicted formulated as a classification task. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of the high-dimensional data and learn the shared information across two tasks, i.e., the classification and the regression. To our knowledge, this study is the first work to jointly predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients' lives. Experimental analysis was conducted on a real data set from two hospitals with 408 chest computed tomography (CT) scans. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the conversion time.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China.
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yanbo Chen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Rongyao Hu
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Natural and Computational Sciences, Massey University Auckland, Auckland 0745, New Zealand
| | - Jiangzhang Gan
- Center for Future Media and school of computer science and technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Natural and Computational Sciences, Massey University Auckland, Auckland 0745, New Zealand
| | - Wenhai Zhang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Man Li
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Liye Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yaozong Gao
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Dinggang Shen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
26
|
|